Bo Elberling
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bo Elberling.
Science | 2009
Eric Post; Mads C. Forchhammer; M. Syndonia Bret-Harte; Terry V. Callaghan; Torben R. Christensen; Bo Elberling; Anthony D. Fox; Olivier Gilg; David S. Hik; Toke T. Høye; Rolf A. Ims; Erik Jeppesen; David R. Klein; Jesper Madsen; A. David McGuire; Søren Rysgaard; Daniel E. Schindler; Ian Stirling; Mikkel P. Tamstorf; Nicholas Tyler; René van der Wal; Jeffrey M. Welker; Philip A. Wookey; Niels Martin Schmidt; Peter Aastrup
Assessing the Arctic The Arctic is experiencing some of the most rapid climate change currently under way across the globe, but consequent ecological responses have not been widely reported. At the close of the Fourth International Polar Year, Post et al. (p. 1355) review observations on ecological impacts in this sensitive region. The widespread changes occurring in terrestrial, freshwater, and marine systems, presage changes at lower latitudes that will affect natural resources, food production, and future climate buffering. At the close of the Fourth International Polar Year, we take stock of the ecological consequences of recent climate change in the Arctic, focusing on effects at population, community, and ecosystem scales. Despite the buffering effect of landscape heterogeneity, Arctic ecosystems and the trophic relationships that structure them have been severely perturbed. These rapid changes may be a bellwether of changes to come at lower latitudes and have the potential to affect ecosystem services related to natural resources, food production, climate regulation, and cultural integrity. We highlight areas of ecological research that deserve priority as the Arctic continues to warm.
Nature | 2016
Thomas W. Crowther; Katherine Todd-Brown; C. W. Rowe; William R. Wieder; Joanna C. Carey; Megan B. Machmuller; L. Basten Snoek; Shibo Fang; Guangsheng Zhou; Steven D. Allison; John M. Blair; Scott D. Bridgham; Andrew J. Burton; Yolima Carrillo; Peter B. Reich; James S. Clark; Aimée T. Classen; Feike A. Dijkstra; Bo Elberling; Bridget A. Emmett; Marc Estiarte; Serita D. Frey; Jixun Guo; John Harte; Lifen Jiang; Bart R. Johnson; György Kröel-Dulay; Klaus Steenberg Larsen; Hjalmar Laudon; Jocelyn M. Lavallee
The majority of the Earth’s terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12–17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon–climate feedback that could accelerate climate change.
Advances in Ecological Research | 2008
Bo Elberling; Mikkel P. Tamsdorf; Anders Michelsen; Marie F. Arndal; Charlotte Sigsgaard; Lotte Illeris; Christian Bay; Birger Ulf Hansen; Torben R. Christensen; Eric Steen Hansen; Bjarne Holm Jakobsen; Louis Beyens
Arctic soils hold large amounts of nutrients in the weatherable minerals and the soil organic matter, which slowly decompose. The decomposition processes release nutrients to the plant-available nutrient pool as well as greenhouse gases to the atmosphere. Changes in climatic conditions, for example, changes in the distribution of snow, water balance and the length of the growing season, are likely to affect the complex interactions between plants, abiotic and biotic soil processes as well as the composition of soil micro- and macro-fauna and thereby the overall decomposition rates. These interactions, in turn, will influence soil-plant functioning and vegetation composition in the short as well as in the long term. In this chapter, we report on soils and. plant communities and their distribution patterns in the valley Zackenbergdalen and focus on the detailed investigations within five dominating plant communities. These five communities are located along an ecological gradient in the landscape and are closely related to differences in water availability. They are therefore indirectly formed as a result of the distribution of landforms, redistribution of snow and drainage conditions. Each of the plant communities is closely related to specific nutrient levels and degree of soil development including soil element accumulation and translocation, for example, organic carbon. Results presented here show that different parts of the landscape have responded quite differently to the same overall climate changes the last 10 years and thus, most likely in the future too. Fens represent the wettest sites holding large reactive buried carbon stocks. A warmer climate will cause a permafrost degradation, which most likely will result in anoxic decomposition and increasing methane emissions. However, the net gas emissions at fen sites are sensitive to long-term changes in the water table level. Indeed, increasing maximum active layer depth at fen sites has been recorded together with a decreasing water level at Zackenberg. This is in line with the first signs of increasing extension of grasslands at the expense of fens. In contrast, the most exposed and dry areas have less soil carbon, and decomposition processes are periodically water limited. Here, an increase in air temperatures may increase active layer depth more than at fen sites, but water availability will be critical in determining nutrient cycling and plant production. Field manipulation experiments of increasing temperature, water supply and nutrient addition show that soil-plant interactions are sensitive to these variables. However, additional plant-specific investigations are needed before net effects of climate changes on different landscape and plant communities can be integrated in a landscape context and used to assess the net ecosystem effect of future climate scenarios.
Polar Research | 2010
Elke Morgner; Bo Elberling; Ditte Strebel; Elisabeth J. Cooper
Winter respiration in snow-covered ecosystems strongly influences annual carbon cycling, underlining the importance of processes related to the timing and quantity of snow. Fences were used to increase snow depth from 30 to 150 cm, and impacts on respiration were investigated in heath and mesic meadow, two common vegetation types in Svalbard. We manually measured ecosystem respiration from July 2007 to July 2008 at a temporal resolution greater than previously achieved in the High Arctic (campaigns: summer, eight; autumn, six; winter, 17; spring, nine). Moisture contents of unfrozen soil and soil temperatures throughout the year were also recorded. The increased snow depth resulted in significantly higher winter soil temperatures and increased ecosystem respiration. A temperature–efflux model explained most of the variation of observed effluxes: meadows, 94 (controls) and 93% (fences); heaths, 84 and 77%, respectively. Snow fences increased the total non-growing season efflux from 70 to 92 (heaths) and from 68 to 125 g CO2-C m-2 (meadows). The non-growing season contributed to 56 (heaths) and 42% (meadows) of the total annual carbon respired. This proportion increased with deeper snow to 64% in both vegetation types. Summer respiration rates were unaffected by snow fences, but the total growing season respiration was lower behind fences because of the considerably delayed snowmelt. Meadows had higher summer respiration rates than heaths. In addition, non-steady state CO2 effluxes were measured as bursts lasting several days during spring soil thawing, and when ice layers were broken to carry out winter efflux measurements.
Marine Environmental Research | 2003
Bo Elberling; Karen Luise Knudsen; Peter H. Kristensen; Gert Asmund
Sulphidic mine waste disposed in marine environments constitutes an environmental risk to aquatic life due to potential uptake and accumulation of heavy metals in biota. Fiord sediments near the former Black Angel Mine in West Greenland are contaminated by lead and zinc as a result of submarine tailings disposal in 1973-1990. In 1999 cores were taken up to 10 km away from the disposal area. Analyses include heavy metals, radiochemical dating (210Pb) and high-resolution foraminiferal stratigraphy. The mining operation resulted in significant changes in the assemblage composition. In addition, up to 20% of the Melonis barleeanus population found in sediment deposited during nearby tailings disposal was deformed compared to a natural background of less than 5%. Throughout cores representing the last 100 years of sedimentation, the total numbers and frequency of morphological abnormalities among M. barleeanus revealed some correlation with heavy metals concentrations (up to r2 = 79%). We conclude that abnormalities among foraminifera may represent a useful biomarker for evaluating trends in the biological impact resulting of submarine tailings disposal as well as long-term environmental impact and subsequent recovery.
Journal of Contaminant Hydrology | 2000
Bo Elberling; Axel Schippers; Wolfgang Sand
Microbial and chemical sulfide oxidation activity and oxygen consumption was investigated in the active layer of pyritic mine tailings at Nanisivik Mine, located in a permafrost area on Baffin Island in northern Canada. Samples of tailings were collected up to a depth of 60 cm in mid-August 1998 at 4 sites, for which the metabolic activity of sulfur- and iron-oxidizing leaching bacteria besides the chemical pyrite oxidation activity were measured on 39 tailings samples and 7 samples from a natural pyritic site by calorimetry. The tailings of varying age and water content were deposited under alkaline conditions. In situ oxygen uptake rates were measured at the tailings surface every third day, prior to sampling. In addition, cell counts of iron(II), sulfur, and thiosulfate oxidizing, lithotrophic bacteria and chemoorganotrophic microorganisms were determined quantitatively by the most-probable-number technique or by agar-plating. Results show consistent pyrite oxidation rates based on in situ oxygen uptake rates, and laboratory heat output measurements. Litho- and organotrophic bacteria were found in the tailings. Calorimetric measurements revealed that the present bacterial activity is responsible for approximately one third of the ongoing oxidation. Although leaching bacteria have previously been found in the Arctic, this study is the first to prove the significance of bacterial activity in the overall pollution resulting from tailings deposited in the Arctic.
Proceedings of the Royal Society of London B: Biological Sciences | 2006
D.W Hopkins; Ashley D. Sparrow; Philip M. Novis; E.G. Gregorich; Bo Elberling; L.G. Greenfield
The Antarctic Dry Valleys are regarded as one of the harshest terrestrial habitats on Earth because of the extremely cold and dry conditions. Despite the extreme environment and scarcity of conspicuous primary producers, the soils contain organic carbon and heterotrophic micro-organisms and invertebrates. Potential sources of organic compounds to sustain soil organisms include in situ primary production by micro-organisms and mosses, spatial subsidies from lacustrine and marine-derived detritus, and temporal subsidies (‘legacies’) from ancient lake deposits. The contributions from these sources at different sites are likely to be influenced by local environmental conditions, especially soil moisture content, position in the landscape in relation to lake level oscillations and legacies from previous geomorphic processes. Here we review the abiotic factors that influence biological activity in Dry Valley soils and present a conceptual model that summarizes mechanisms leading to organic resources therein.
Geochimica et Cosmochimica Acta | 2001
Bo Elberling; Lars Riis Damgaard
The disposal of sulfide mine tailings in an environmentally sound, yet cost-effective, manner is an issue facing most metal mines. Subaqueous tailing disposal is considered an attractive option for disposal that limits oxygen (O2) availability within sulfide mine tailings and controlling sulfide oxidation and the resultant acid mine drainage (AMD). Assuming that O2 profiles represent steady-state conditions, we aim to evaluate the depth-dependent and temperature-dependent rates of O2 consumption in saturated mine tailings. Measurements include microscale O2 gradients and diffusivity profiles within columns representing undisturbed mine tailing profiles from an impoundment near Nanisivik Mine in northern Canada. Measurements were made across the diffusive boundary layer (DBL) above the tailing-water interface as well as in the tailings below. Laboratory measurements of O2 profiles are compared to in situ profiles. From the laboratory results it is possible to evaluate the O2 flux across the DBL and the depth-integrated O2 uptake. The results are compared with the average sulfate production rate over 3 months. O2 uptake in saturated tailings is discussed in relation to O2 uptake measured in columns after free drainage. The methods applied provide consistent O2 consumption rates as well as reliable predictions for controlling AMD by keeping tailings under water.
Environmental Science & Technology | 2011
Bo Elberling; Louise Askaer; Christian Juncher Jørgensen; Hans P. Joensen; Michael Kühl; Ronnie N. Glud; Frants R. Lauritsen
Oxygen (O(2)) availability and diffusivity in wetlands are controlling factors for the production and consumption of both carbon dioxide (CO(2)) and methane (CH(4)) in the subsoil and thereby potential emission of these greenhouse gases to the atmosphere. To examine the linkage between high-resolution spatiotemporal trends in O(2) availability and CH(4)/CO(2) dynamics in situ, we compare high-resolution subsurface O(2) concentrations, weekly measurements of subsurface CH(4)/CO(2) concentrations and near continuous flux measurements of CO(2) and CH(4). Detailed 2-D distributions of O(2) concentrations and depth-profiles of CO(2) and CH(4) were measured in the laboratory during flooding of soil columns using a combination of planar O(2) optodes and membrane inlet mass spectrometry. Microsensors were used to assess apparent diffusivity under both field and laboratory conditions. Gas concentration profiles were analyzed with a diffusion-reaction model for quantifying production/consumption profiles of O(2), CO(2), and CH(4). In drained conditions, O(2) consumption exceeded CO(2) production, indicating CO(2) dissolution in the remaining water-filled pockets. CH(4) emissions were negligible when the oxic zone was >40 cm and CH(4) was presumably consumed below the depth of detectable O(2). In flooded conditions, O(2) was transported by other mechanisms than simple diffusion in the aqueous phase. This work demonstrates the importance of changes in near-surface apparent diffusivity, microscale O(2) dynamics, as well as gas transport via aerenchymous plants tissue on soil gas dynamics and greenhouse gas emissions following marked changes in water level.
Journal of Hydrology | 2003
Bo Elberling
Abstract Seasonal trends and controls of soil CO 2 concentrations are important for understanding soil carbon cycling, soil acidification and CO 2 emissions to the atmosphere. This is particularly the case for cold region soils, since these hold extensive soil carbon reserves and are often subject to fluctuating environmental conditions. This paper evaluates and simulates seasonal trends and controls of subsurface CO 2 dynamics at a tundra-heath site in NE-Greenland. The study consisted of field measurements of soil CO 2 efflux, temperature, water content, pore gas composition in soil profiles as well as temperature- and moisture-controlled laboratory experiments. Diurnal and seasonal variations in observed CO 2 effluxes correlated fairly well with near-surface temperatures ( r 2 >0.8) except during periods where soil CO 2 efflux was dominated by CO 2 being released in burst due to rapid near-surface thawing or major precipitation events. Lack of correlation in these situations is considered a result of non-steady state conditions. Laboratory experiments on soil samples collected from four horizons revealed that the effect of temperature and water content on soil microbial respiration can be modelled by simple fit equations which explained 95% of the variation in observed soil CO 2 effluxes during the 2001 growing season. Using observations of the water content and subsurface CO 2 concentration with depth and time it was possible to predict the depth-dependent CO 2 production using a steady state diffusion model (PROFILE). The resulting simulated CO 2 production profile and soil CO 2 effluxes agreed with observations and revealed the importance of CO 2 diffusion for understanding subsurface soil CO 2 dynamics. In addition, seasonal rates of soil CO 2 production were predicted using the verified fit equations and observed soil temperatures and water contents. This final model leads to a discussion on shifts in factors controlling of subsurface CO 2 dynamics over the year as well as the importance of such shifts in relation to future field and modelling studies of soil respiration dynamics in soils subject to freezing.