Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bo Falck Hansen is active.

Publication


Featured researches published by Bo Falck Hansen.


The Journal of Physiology | 2000

Isoform-specific and exercise intensity-dependent activation of 5'-AMP-activated protein kinase in human skeletal muscle.

Jørgen F. P. Wojtaszewski; Pernille Nielsen; Bo Falck Hansen; Erik A. Richter; Bente Kiens

1 5′‐AMP‐activated protein kinase (AMPK) has been suggested to play a key role in the regulation of metabolism in skeletal muscle. AMPK is activated in treadmill‐exercised and electrically stimulated rodent muscles. Whether AMPK is activated during exercise in humans is unknown. 2 We investigated the degree of activation and deactivation of α‐isoforms of AMPK during and after exercise. Healthy human subjects performed bicycle exercise on two separate occasions at either a low (∼50% maximum rate of O2 uptake (V̇O2,max) for 90 min) or a high (∼75% V̇O2,max for 60 min) intensity. Biopsies from the vastus lateralis muscle were obtained before and immediately after exercise, and after 3 h of recovery. 3 We observed a 3‐ to 4‐fold activation of the α2‐AMPK isoform immediately after high intensity exercise, whereas no activation was observed after low intensity exercise. The activation of α2‐AMPK was totally reversed 3 h after exercise. In contrast, α1‐AMPK was not activated during either of the two exercise trials. 4 The in vitro AMP dependency of α2‐AMPK was significantly greater than that of α1‐AMPK (∼3‐ vs.∼2‐fold). 5 We conclude that in humans activation of α2‐AMPK during exercise is dependent upon exercise intensity. The stable activation of α2‐AMPK, presumably due to the activation of an upstream AMPK kinase, is compatible with a role for this kinase complex in the regulation of skeletal muscle metabolism during exercise, whereas the lack of stable α1‐AMPK activation makes this kinase complex a less likely candidate.


Diabetes | 1997

Insulin Signaling in Human Skeletal Muscle: Time Course and Effect of Exercise

Jørgen F. P. Wojtaszewski; Bo Falck Hansen; Bente Kiens; Erik A. Richter

Activation of early steps in the insulin signaling cascade in human skeletal muscle was investigated using a one-step euglycemic-hyperinsulinemic (∼100 μU/ml) clamp in seven healthy young men 3 h after one-legged exercise. Concomitant insulin stimulation (three- to six-fold [P < 0.05]) of thigh glucose clearance, muscle insulin receptor tyrosine kinase (IRTK), insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, and IRS-1-associated phosphatidylinositol 3-kinase (PI 3-kinase) was observed in the rested leg. Twenty minutes after cessation of insulin infusion, the level of these parameters returned toward basal. A twofold higher insulin-stimulated glucose clearance in the exercised compared with the rested thigh was accompanied by unaltered maximal IRTK activation and IRS-1 tyrosine phosphorylation, and by a decreased (∼50%, P < 0.05) maximal IRS-1 associated PI 3-kinase activation. Prior exercise caused significantly faster insulin-stimulated tyrosine phosphorylation of IRS-1, PI 3-kinase activity, and glucose clearance compared with those in the rested thigh. In conclusion, physiological hyperin-sulinemia activates IRTK, IRS-1 tyrosine phosphorylation, and PI 3-kinase in human skeletal muscle. However, increased insulin action after exercise is not caused by potentiation of these steps in the insulin signaling cascade. In contrast, at steady state, paradoxically decreased insulin-stimulated IRS-1-associated PI 3-kinase activity was observed in exercised muscle. Thus, the activity of IRS-1-associated PI 3-kinase and glucose uptake may not always be tightly coupled during insulin stimulation in human muscle.


Biochemical and Biophysical Research Communications | 2008

A novel high-affinity peptide antagonist to the insulin receptor

Lauge Schäffer; Christian L. Brand; Bo Falck Hansen; Ulla Ribel; Allan Christian Shaw; Rita Slaaby; Jeppe Sturis

In this publication we describe a peptide insulin receptor antagonist, S661, which is a single chain peptide of 43 amino acids. The affinity of S661 for the insulin receptor is comparable to that of insulin and the selectivity for the insulin receptor versus the IGF-1 receptor is higher than that of insulin itself. S661 is also an antagonist of the insulin receptor of other species such as pig and rat, and it also has considerable affinity for hybrid insulin/IGF-1 receptors. S661 completely inhibits insulin action, both in cellular assays and in vivo in rats. A biosynthetic version called S961 which is identical to S661 except for being a C-terminal acid seems to have properties indistinguishable from those of S661. These antagonists provide a useful research tool for unraveling biochemical mechanisms involving the insulin receptor and could form the basis for treatment of hypoglycemic conditions.


Journal of Biological Chemistry | 2005

Phosphorylation-dependent translocation of glycogen synthase to a novel structure during glycogen resynthesis.

Clara Prats; Joan A. Cadefau; Roser Cussó; Klaus Qvortrup; Jakob N. Nielsen; Jørgen F. P. Wojtaszewki; D. Grahame Hardie; Greg Stewart; Bo Falck Hansen; Thorkil Ploug

Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase (GS) and glycogen phosphorylase (GPh), respectively. Both enzymes are regulated by reversible phosphorylation and by allosteric effectors. However, evidence in the literature indicates that changes in muscle GS and GPh intracellular distribution may constitute a new regulatory mechanism of glycogen metabolism. Already in the 1960s, it was proposed that glycogen was present in dynamic cellular organelles that were termed glycosomas but no such cellular entities have ever been demonstrated. The aim of this study was to characterize muscle GS and GPh intracellular distribution and to identify possible translocation processes of both enzymes. Using in situ stimulation of rabbit tibialis anterior muscle, we show GS and GPh intracellular redistribution at the beginning of glycogen resynthesis after contraction-induced glycogen depletion. We identify a new “player,” a new intracellular compartment involved in skeletal muscle glycogen metabolism. They are spherical structures that were not present in basal muscle, and we present evidence that indicate that they are products of actin cytoskeleton remodeling. Furthermore, for the first time, we show a phosphorylation-dependent intracellular distribution of GS. Here, we present evidence of a new regulatory mechanism of skeletal muscle glycogen metabolism based on glycogen enzyme intracellular compartmentalization.


The Journal of Clinical Endocrinology and Metabolism | 2009

Dysregulation of Glycogen Synthase COOH- and NH2-Terminal Phosphorylation by Insulin in Obesity and Type 2 Diabetes Mellitus

Kurt Højlund; Jesper B. Birk; Ditte Kjærsgaard Klein; Klaus Levin; Adam J. Rose; Bo Falck Hansen; Jakob Nielsen; Henning Beck-Nielsen; Jørgen F. P. Wojtaszewski

CONTEXT Insulin-stimulated glucose disposal is impaired in obesity and type 2 diabetes mellitus (T2DM) and is tightly linked to impaired skeletal muscle glucose uptake and storage. Impaired activation of glycogen synthase (GS) by insulin is a well-established defect in both obesity and T2DM, but the underlying mechanisms remain unclear. DESIGN AND PARTICIPANTS Insulin action was investigated in a matched cohort of lean healthy, obese nondiabetic, and obese type 2 diabetic subjects by the euglycemic-hyperinsulinemic clamp technique combined with muscle biopsies. Activity, site-specific phosphorylation, and upstream signaling of GS were evaluated in skeletal muscle. RESULTS GS activity correlated inversely with phosphorylation of GS site 2+2a and 3a. Insulin significantly decreased 2+2a phosphorylation in lean subjects only and induced a larger dephosphorylation at site 3 in lean compared with obese subjects. The exaggerated insulin resistance in T2DM compared with obese subjects was not reflected by differences in site 3 phosphorylation but was accompanied by a significantly higher site 1b phosphorylation during insulin stimulation. Hyperphosphorylation of another Ca(2+)/calmodulin-dependent kinase-II target, phospholamban-Thr17, was also evident in T2DM. Dephosphorylation of GS by phosphatase treatment fully restored GS activity in all groups. CONCLUSIONS Dysregulation of GS phosphorylation plays a major role in impaired insulin regulation of GS in obesity and T2DM. In obesity, independent of T2DM, this is associated with impaired regulation of site 2+2a and likely site 3, whereas the exaggerated insulin resistance to activate GS in T2DM is linked to hyperphosphorylation of at least site 1b. Thus, T2DM per se seems unrelated to defects in the glycogen synthase kinase-3 regulation of GS.


Journal of Biological Chemistry | 2011

Structural and Biological Properties of the Drosophila Insulin-Like Peptide 5 Show Evolutionary Conservation.

Waseem Sajid; Nikolaj Kulahin; Gerd Schluckebier; Ulla Ribel; Hope R. Henderson; Marc Tatar; Bo Falck Hansen; Angela Manegold Svendsen; Vladislav V. Kiselyov; Per Nørgaard; Per-Olof Wahlund; Jakob Brandt; Ronald A. Kohanski; Asser Sloth Andersen; Pierre De Meyts

We report the crystal structure of two variants of Drosophila melanogaster insulin-like peptide 5 (DILP5) at a resolution of 1.85 Å. DILP5 shares the basic fold of the insulin peptide family (T conformation) but with a disordered B-chain C terminus. DILP5 dimerizes in the crystal and in solution. The dimer interface is not similar to that observed in vertebrates, i.e. through an anti-parallel β-sheet involving the B-chain C termini but, in contrast, is formed through an anti-parallel β-sheet involving the B-chain N termini. DILP5 binds to and activates the human insulin receptor and lowers blood glucose in rats. It also lowers trehalose levels in Drosophila. Reciprocally, human insulin binds to the Drosophila insulin receptor and induces negative cooperativity as in the human receptor. DILP5 also binds to insect insulin-binding proteins. These results show high evolutionary conservation of the insulin receptor binding properties despite divergent insulin dimerization mechanisms.


Diabetologia | 2011

Insulin X10 revisited: a super-mitogenic insulin analogue

Bo Falck Hansen; Peter Kurtzhals; A. B. Jensen; A. Dejgaard; David Russell-Jones

The molecular safety of insulin analogues has received a great deal of attention over the last year. In particular, attention has been directed to the mitogenic properties of insulin analogues as compared with human insulin. Understanding the mechanisms implicated in mediating mitogenic effects of insulin is therefore of particular interest. In this review we detail the story of the rapid-acting insulin analogue known as X10, which was the first insulin analogue in clinical development, but ended up being discontinued at an early clinical development stage following findings of mammary tumours in female Sprague–Dawley rats. The molecular characteristics of insulin X10, along with its interaction at both the IGF-1 receptor and the insulin receptor, have provided us with important insights into mechanisms implicated in metabolic and mitogenic signalling of insulin analogues.


Expert Opinion on Investigational Drugs | 1999

Insulin aspart: a novel rapid-acting human insulin analogue.

Steen Gammeltoft; Bo Falck Hansen; Lars Dideriksen; Anders Lindholm; Lauge Schäffer; Thomas Trüb; Anthony Dayan; Peter Kurtzhals

In order to improve therapy and increase the quality of life for diabetic patients, it has been of significant interest to develop rapid-acting insulin preparations that mimic the physiological meal-time profile of insulin more closely than soluble human insulin. Insulin aspart (B28Asp human insulin) is a novel rapid-acting insulin analogue that fulfils this criterion. The B28Asp modification weakens the self-association of the insulin molecule and provides a more rapid absorption from the sc. injection site. The preclinical evaluation in vitro and in vivo demonstrates that apart from the more rapid absorption, insulin aspart is equivalent to human insulin. Thus, insulin aspart is equivalent to human insulin on key in vitro parameters such as insulin receptor affinity, insulin receptor dissociation rate, insulin receptor tyrosine kinase activation, IGF-I receptor binding affinity, metabolic and mitogenic potency. In accordance with the equivalent in vitro profiles, the toxico-pharmacological properties of insulin aspart and human insulin are also identical. The available data for insulin aspart and other rapid-acting insulin analogues supports that in vitro assays are sensitive and valuable in the preclinical evaluation of insulin analogues. Clinical studies demonstrate that insulin aspart has a pharmacokinetic and pharmacodynamic profile superior to that of soluble human insulin. In Type 1 diabetic patients on a basal-bolus injection regimen, insulin aspart given immediately before the meals provides an improved postprandial glycaemic control and an improved long-term metabolic control, as compared to soluble human insulin given 30 min before the meals, without increasing the risk of hypoglycaemia. Taken together, the data support the hope that insulin aspart will allow the diabetic patient to combine a more flexible lifestyle with better glycaemic control, without any increased safety risk.


PLOS ONE | 2012

Agonism and Antagonism at the Insulin Receptor

Louise Stjerne Knudsen; Bo Falck Hansen; Pia Jensen; Thomas Pedersen; Kirsten Vestergaard; Lauge Schäffer; Blagoy Blagoev; Martin B. Oleksiewicz; Vladislav V. Kiselyov; Pierre De Meyts

Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B’29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1–10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints (3H-thymidine incorporation), and not on metabolic endpoints (14C-glucose incorporation in adipocytes and muscle cells). The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity (3H-thymidine incorporation) and phosphorylation of the IR and Akt. Together with the B29-B’29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed.


The Journal of Clinical Endocrinology and Metabolism | 2008

Impaired Insulin Activation and Dephosphorylation of Glycogen Synthase in Skeletal Muscle of Women with Polycystic Ovary Syndrome Is Reversed by Pioglitazone Treatment

Dorte Glintborg; Kurt Højlund; Nicoline R. Andersen; Bo Falck Hansen; Henning Beck-Nielsen; Jørgen F. P. Wojtaszewski

CONTEXT Insulin resistance is a major risk factor for type 2 diabetes in women with polycystic ovary syndrome (PCOS). The molecular mechanisms underlying reduced insulin-mediated glycogen synthesis in skeletal muscle of patients with PCOS have not been established. SUBJECTS AND METHODS We investigated protein content, activity, and phosphorylation of glycogen synthase (GS) and its major upstream inhibitor, GS kinase (GSK)-3 in skeletal muscle biopsies from 24 PCOS patients (before treatment) and 14 matched control subjects and 10 PCOS patients after 16 wk treatment with pioglitazone. All were metabolically characterized by euglycemic-hyperinsulinemic clamps and indirect calorimetry. RESULTS Reduced insulin-mediated glucose disposal (P < 0.05) was associated with a lower insulin-stimulated GS activity in PCOS patients (P < 0.05), compared with controls. This was, in part, explained by absent insulin-mediated dephosphorylation of GS at the NH2-terminal sites 2+2a, whereas dephosphorylation at the COOH-terminal sites 3a+3b was intact in PCOS subjects (P < 0.05). Consistently, multiple linear regression analysis showed that insulin activation of GS was dependent on dephosphorylation of sites 3a+3b in women with PCOS. No significant abnormalities in GSK-3alpha or -3beta were found in PCOS subjects. Pioglitazone treatment improved insulin-stimulated glucose metabolism and GS activity in PCOS (all P < 0.05) and restored the ability of insulin to dephosphorylate GS at sites 2 and 2a. CONCLUSIONS Impaired insulin activation of GS including absent dephosphorylation at sites 2+2a contributes to insulin resistance in skeletal muscle in PCOS. The ability of pioglitazone to enhance insulin sensitivity, in part, involves improved insulin action on GS activity and dephosphorylation at NH2-terminal sites.

Collaboration


Dive into the Bo Falck Hansen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesper B. Birk

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge