Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bo Gun Jang is active.

Publication


Featured researches published by Bo Gun Jang.


British Journal of Cancer | 2015

Loss of FOXO1 promotes gastric tumour growth and metastasis through upregulation of human epidermal growth factor receptor 2/neu expression.

Young San Ko; Sung Jin Cho; Jinju Park; Young Hoon Kim; Yong Joon Choi; Jung-Soo Pyo; Bo Gun Jang; Jong-Wan Park; Woo Ho Kim; Byung Lan Lee

Background:The biological significance of FOXO1, a member of the forkhead box O transcription factor family, in gastric cancer (GC) remains unclear. The present study provides direct evidence of the role of FOXO1 in tumour growth and metastasis of GC in relation to human epidermal growth factor receptor 2 (HER2).Methods:The expressions of FOXO1 and HER2 were modulated in GC cell lines (SNU-638, MKN45, SNU-216 and NCI-N87) by stable transfections. The effects of transfection on GC phenotypes were evaluated in vitro and in animal models. In addition, the relationship between FOXO1 and HER2 was analysed using GC clinical specimens, cell lines and xenografts.Results:FOXO1 silencing in GC cells increased colony formation and mesenchymal transition in vitro, as well as tumour growth and metastasis in nude mice, whereas HER2 silencing induced the opposite results.. Furthermore, an inverse relationship between FOXO1 and HER2 was found in clinical specimens of GC, GC cells and GC xenograft tumours. Although a negative crosstalk between these two molecules was shown, double knockdown of both FOXO1 and HER2 in GC cells revealed that HER2 silencing reversed the FOXO1 shRNA-induced migration and invasion even without the FOXO1 restoration.Conclusions:Our results indicate that loss of FOXO1 promotes GC growth and metastasis by upregulating HER2 expression and that the HER2 expression is more critical to the induction of GC cell metastasis. The present study provides evidence that the FOXO1/HER2 pathway may regulate GC progression in a subgroup of GC patients.


Cancer Research and Treatment | 2017

FOXO1 Suppression is a Determinant of Acquired Lapatinib-Resistance in HER2-Positive Gastric Cancer Cells Through MET Upregulation

Jinju Park; Yiseul Choi; Young San Ko; Young Hoon Kim; Jung-Soo Pyo; Bo Gun Jang; Min A Kim; Jae-Seon Lee; Mee Soo Chang; Jong-Wan Park; Byung Lan Lee

PURPOSE Lapatinib is a candidate drug for treatment of trastuzumab-resistant, human epidermal growth factor receptor 2 (HER2)-positive gastric cancer (GC). Unfortunately, lapatinib resistance renders this drug ineffective. The present study investigated the implication of forkhead box O1 (FOXO1) signaling in the acquired lapatinib resistance in HER2-positive GC cells. MATERIALS AND METHODS Lapatinib-resistant GC cell lines (SNU-216 LR2-8) were generated in vitro by chronic exposure of lapatinib-sensitive, HER2-positive SNU-216 cells to lapatinib. SNU-216 LR cells with FOXO1 overexpression were generated by stable transfection of a constitutively active FOXO1 mutant (FOXO1A3). HER2 and MET in SNU-216 LR cells were downregulated using RNA interference. The sensitivity of GC cells to lapatinib and/or cisplatin was determined by crystal violet assay. In addition, Western blot analysis, luciferase reporter assay and reverse transcription-polymerase chain reaction were performed. RESULTS SNU-216 LR cells showed upregulations of HER2 and MET, but downregulation of FOXO1 compared to parental SNU-216 cells. FOXO1 overexpression in SNU-216 LR cells significantly suppressed resistance to lapatinib and/or cisplatin. In addition, FOXO1 negatively controlled HER2 and MET at the transcriptional level and was negatively controlled by these molecules at the post-transcriptional level. A positive crosstalk was shown between HER2 and MET, each of which increased resistance to lapatinib and/or cisplatin. CONCLUSION FOXO1 serves as an important linker between HER2 and MET signaling pathways through negative crosstalks and is a key regulator of the acquired lapatinib resistance in HER2-positive GC cells. These findings provide a rationale for establishing a novel treatment strategy to overcome lapatinib resistance in a subtype of GC patients.


PLOS ONE | 2015

Intestinal Stem Cell Markers in the Intestinal Metaplasia of Stomach and Barrett’s Esophagus

Bo Gun Jang; Byung Lan Lee; Woo Ho Kim

Gastric intestinal metaplasia (IM) is a highly prevalent preneoplastic lesion; however, the molecular mechanisms regulating its development remain unclear. We have previously shown that a population of cells expressing the intestinal stem cell (ISC) marker LGR5 increases remarkably in IM. In this study, we further investigated the molecular characteristics of these LGR5 + cells in IM by examining the expression profile of several ISC markers. Notably, we found that ISC markers—including OLFM4 and EPHB2—are positively associated with the CDX2 expression in non-tumorous gastric tissues. This finding was confirmed in stomach lesions with or without metaplasia, which demonstrated that OLFM4 and EPHB2 expression gradually increased with metaplastic progression. Moreover, RNA in situ hybridization revealed that LGR5 + cells coexpress several ISC markers and remained confined to the base of metaplastic glands, reminiscent to that of normal intestinal crypts, whereas those in normal antral glands expressed none of these markers. Furthermore, a large number of ISC marker-expressing cells were diffusely distributed in gastric adenomas, suggesting that these markers may facilitate gastric tumorigenesis. In addition, Barrett’s esophagus (BE)—which is histologically similar to intestinal metaplasia—exhibited a similar distribution of ISC markers, indicating the presence of a stem cell population with intestinal differentiation potential. In conclusion, we identified that LGR5 + cells in gastric IM and BE coexpress ISC markers, and exhibit the same expression profile as those found in normal intestinal crypts. Taken together, these results implicate an intestinal-like stem cell population in the pathogenesis of IM, and provide an important basis for understanding the development and maintenance of this disease.


World Journal of Gastroenterology | 2016

HER2-induced metastasis is mediated by AKT/JNK/EMT signaling pathway in gastric cancer

Yiseul Choi; Young San Ko; Jin Ju Park; Youngsun Choi; Young Hoon Kim; Jung-Soo Pyo; Bo Gun Jang; Douk Ho Hwang; Woo Ho Kim; Byung Lan Lee

AIM To investigated the relationships between HER2, c-Jun N-terminal kinase (JNK) and protein kinase B (AKT) with respect to metastatic potential of HER2-positive gastric cancer (GC) cells. METHODS Immunohistochemistry was performed on tissue array slides containing 423 human GC specimens. Using HER2-positve GC cell lines SNU-216 and NCI-N87, HER2 expression was silenced by RNA interference, and the activations of JNK and AKT were suppressed by SP600125 and LY294002, respectively. Transwell assay, Western blot, semi-quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining were used in cell culture experiments. RESULTS In GC specimens, HER2, JNK, and AKT activations were positively correlated with each other. In vitro analysis revealed a positive regulatory feedback loop between HER2 and JNK in GC cell lines and the role of JNK as a downstream effector of AKT in the HER2/AKT signaling pathway. JNK inhibition suppressed migratory capacity through reversing EMT and dual inhibition of JNK and AKT induced a more profound effect on cancer cell motility. CONCLUSION HER2, JNK and AKT in human GC specimens are positively associated with each other. JNK and AKT, downstream effectors of HER2, co-operatively contribute to the metastatic potential of HER2-positive GC cells. Thus, targeting of these two molecules in combination with HER2 downregulation may be a good approach to combat HER2-positive GC.


Scientific Reports | 2017

Expression profile of intestinal stem cell markers in colitis-associated carcinogenesis

Hye Sung Kim; Cheol Lee; Woo Ho Kim; Young Hee Maeng; Bo Gun Jang

The intestinal epithelium has two distinct two stem cell populations, namely, crypt base columnar (CBC) cells and +4 cells. Several specific markers have been identified for each stem cell population. In this study, we examined the expression profiles of these markers in colitis-associated carcinogenesis (CAC) to investigate whether they can be used as biomarkers for the early detection of dysplasia. The expression of intestinal stem cell (ISC) markers was measured by real-time polymerase chain reaction during CAC that was induced by azoxymethane and dextran sodium sulfate treatment. CBC stem cell markers increased continuously with tumor development, whereas a +4 cell expression profile was not present. CBC stem cell population was suppressed in the acute colitis and then expanded to repopulate the crypts during the regeneration period. Notably, RNA in situ hybridization revealed that all dysplasia and cancer samples showed increased expression of CBC stem cell markers in more than one-third of the tumor height, whereas regenerative glands had CBC stem cell markers confined to the lower one-third of the crypt. These results suggest that CBC stem cell markers could be a useful tool for the early detection of colitis-induced tumors.


PLOS ONE | 2017

GREM1 is expressed in the cancer-associated myofibroblasts of basal cell carcinomas

Hye Sung Kim; Myung Soo Shin; Min Seok Cheon; Jae Wang Kim; Cheol Lee; Woo Ho Kim; Young Sill Kim; Bo Gun Jang

Cancer-associated fibroblasts (CAFs) play important roles in cancer progression through their complex interactions with cancer cells. The secreted bone morphogenetic protein antagonist, gremlin1 (GREM1) is expressed by the CAFs of basal cell carcinomas (BCCs), and promotes the growth of cancer cells. In this study, we investigated the expression of GREM1 mRNAs in various benign and malignant skin tumors, including various BCC subtypes. Analysis by RNA in situ hybridization (ISH) revealed that fibroblasts in the scar tissue expressed GREM1 and α-smooth muscle actin (α-SMA), whereas resident fibroblasts in the dermis of the normal skin did not express GREM1. Real-time polymerase chain reaction analysis showed significantly higher GREM1 expression in skin cancers and pilomatricomas (PMCs) than in other benign skin tumors. Tissue microarrays analyzed by RNA ISH for GREM1 expression also demonstrated that 23% of BCCs, 42% of squamous cell carcinomas, 20% of melanomas, and 90% of PMCs were positive for GREM1 expression, whereas trichoepitheliomas, eccrine poromas, hidradenomas, and spiradenomas were negative for GREM1 expression. Most BCCs that were GREM1 expression positive were of desmoplastic or mixed subtypes, and GREM1 expression was localized to activated myofibroblasts at the tumoral-stromal interface. Interestingly, most PMCs harbored GREM1-expressing fibroblasts, probably because of the inflammatory responses caused by foreign body reactions to keratin. Additionally, in BCCs, stromal GREM1 expression had a strong correlation with CD10 expression. In conclusion, GREM1 is frequently expressed by myofibroblasts in scars or in the stroma of basal cell carcinomas, suggesting that GREM1 expression can be a marker for activated myofibroblasts in the cancer stroma or in scar tissue.


Virchows Archiv | 2017

Distinct expression profile of stem cell markers, LGR5 and LGR6, in basaloid skin tumors

Bo Gun Jang; Cheol Lee; Hye Sung Kim; Myung Soo Shin; Min Seok Cheon; Jae Wang Kim; Woo Ho Kim

Mammalian epidermis, which is composed of hair follicles, sebaceous glands, and interfollicular epidermis, is maintained by discrete stem cells. In vivo lineage tracing demonstrated that murine LGR5 cells are mainly responsible for hair follicle regeneration whereas LGR6 cells generate sebaceous glands and interfollicular epidermis. However, little is known about their expression in the human skin tumors. In this study, we investigated the expression profile of LGR5 and LGR6 in a variety of human skin tumors including basaloid tumors with follicular differentiation (94 basal cell carcinomas, 18 trichoepitheliomas, 3 basaloid follicular hamartomas, and 12 pilomatricomas) and tumors with ductal differentiation (7 eccrine poromas, 8 hidradenomas, and 5 spiradenomas). LGR5 expression was highest in basal cell carcinomas (BCCs) followed by trichoepitheliomas (TEs) and basaloid follicular hamartomas. LGR6 had the same expression pattern as LGR5, even though its expression was lower. Interestingly, LGR6 expression was detected in stromal cells around the tumor and papillary mesenchymal bodies of TEs but not in stromal cells of BCCs, suggesting different characteristics of tumor-associated fibroblasts between TEs and BCCs. It was unexpected to find that pilomatricomas exclusively expressed LGR6, and its expression was limited to the basaloid cells. Notably, LGR6-positive cells were observed in sweat gland ductal cells in normal skin. This might explain, in part, the finding that LGR6 expression was relatively higher in basaloid tumors with ductal differentiation than in those with follicular differentiation. In particular, spiradenomas displayed the same distribution pattern of LGR6 as normal sweat glands, suggesting the possibility of LGR6-positive cells as tumor stem cells. In conclusion, we documented the different expression patterns of stem cell markers, LGR5 and LGR6 in various skin tumors. These data may provide important insights to understand the origin and development of basaloid skin tumors.


Korean Journal of Pathology | 2018

Prognostic significance of EPHB2 expression in colorectal cancer progression

Bo Gun Jang; Hye Sung Kim; Weon Young Chang; Jeong Mo Bae; Gyeong Hoon Kang

Background A receptor tyrosine kinase for ephrin ligands, EPHB2, is expressed in normal colorectal tissues and colorectal cancers (CRCs). The aim of this study was to investigate EPHB2 expression over CRC progression and determine its prognostic significance in CRC. Methods To measure EPHB2 mRNA and protein expression, real-time polymerase chain reaction and immunohistochemistry were performed in 32 fresh-frozen and 567 formalin-fixed paraffin-embedded CRC samples, respectively. We further investigated clinicopathological features and overall and recurrence-free survival according to EPHB2 protein expression. Results The EPHB2 level was upregulated in CRC samples compared to non-cancerous tissue in most samples and showed a strong positive correlation with AXIN2. Notably, CD44 had a positive association with both mRNA and protein levels of EPHB2. Immunohistochemical analysis revealed no difference in EPHB2 expression between adenoma and carcinoma areas. Although EPHB2 expression was slightly lower in invasive fronts compared to surface area (p < .05), there was no difference between superficial and metastatic areas. EPHB2 positivity was associated with lymphatic (p < .001) and venous (p = .001) invasion, TNM stage (p < .001), and microsatellite instability (p = .036). Kaplan–Meier analysis demonstrated that CRC patients with EPHB2 positivity showed better clinical outcomes in both overall (p = .049) and recurrence-free survival (p = .015). However, multivariate analysis failed to show that EPHB2 is an independent prognostic marker in CRCs (hazard ratio, 0.692; p = .692). Conclusions Our results suggest that EPHB2 is overexpressed in a subset of CRCs and is a significant prognostic marker.


Virchows Archiv | 2015

Olfactomedin-related proteins 4 (OLFM4) expression is involved in early gastric carcinogenesis and of prognostic significance in advanced gastric cancer

Bo Gun Jang; Byung Lan Lee; Woo Ho Kim


Virchows Archiv | 2015

ETV1 mRNA is specifically expressed in gastrointestinal stromal tumors

Bo Gun Jang; Hee Eun Lee; Woo Ho Kim

Collaboration


Dive into the Bo Gun Jang's collaboration.

Top Co-Authors

Avatar

Woo Ho Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Byung Lan Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jung-Soo Pyo

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Young San Ko

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hye Sung Kim

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Jinju Park

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Yiseul Choi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Cheol Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Min A Kim

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge