Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bo Halle is active.

Publication


Featured researches published by Bo Halle.


JAMA | 2017

Association of Antithrombotic Drug Use With Subdural Hematoma Risk

David Gaist; Luis A. García Rodríguez; Maja Hellfritzsch; Frantz Rom Poulsen; Bo Halle; Jesper Hallas; Anton Pottegård

Importance Incidence of subdural hematoma has been reported to be increasing. To what extent this is related to increasing use of antithrombotic drugs is unknown. Objectives To estimate the association between use of antithrombotic drugs and subdural hematoma risk and determine trends in subdural hematoma incidence and antithrombotic drug use in the general population. Design, Setting, and Participants Case-control study of 10 010 patients aged 20 to 89 years with a first-ever subdural hematoma principal discharge diagnosis from 2000 to 2015 matched by age, sex, and calendar year to 400 380 individuals from the general population (controls). Subdural hematoma incidence and antithrombotic drug use was identified using population-based regional data (population: 484 346) and national data (population: 5.2 million) from Denmark. Conditional logistic regression models were used to estimate odds ratios (ORs) that were adjusted for comorbidity, education level, and income level. Exposures Use of low-dose aspirin, clopidogrel, a vitamin K antagonist (VKA), a direct oral anticoagulant, and combined antithrombotic drug treatment. Main Outcomes and Measures Association of subdural hematoma with antithrombotic drug use, subdural hematoma incidence rate, and annual prevalence of treatment with antithrombotic drugs. Results Among 10 010 patients with subdural hematoma (mean age, 69.2 years; 3462 women [34.6%]), 47.3% were taking antithrombotic medications. Current use of low-dose aspirin (cases: 26.7%, controls: 22.4%; adjusted OR, 1.24 [95% CI, 1.15-1.33]), clopidogrel (cases: 5.0%, controls: 2.2%; adjusted OR, 1.87 [95% CI, 1.57-2.24]), a direct oral anticoagulant (cases: 1.0%, controls: 0.6%; adjusted OR, 1.73 [95% CI, 1.31-2.28]), and a VKA (cases: 14.3%, controls: 4.9%; adjusted OR, 3.69 [95% CI, 3.38-4.03]) were associated with higher risk of subdural hematoma. The risk of subdural hematoma was highest when a VKA was used concurrently with an antiplatelet drug (low-dose aspirin and a VKA: 3.6% of cases and 1.1% of controls; adjusted OR, 4.00 [95% CI, 3.40-4.70]; clopidogrel and a VKA: 0.3% of cases and 0.04% of controls; adjusted OR, 7.93 [95% CI, 4.49-14.02]). The prevalence of antithrombotic drug use increased from 31.0 per 1000 individuals from the general population in 2000 to 76.9 per 1000 individuals in 2015 (P < .001 for trend). The overall subdural hematoma incidence rate increased from 10.9 per 100 000 person-years in 2000 to 19.0 per 100 000 person-years in 2015 (P < .001 for trend). The largest increase was among older patients (>75 years; n = 4441) who experienced an increase from 55.1 per 100 000 person-years to 99.7 per 100 000 person-years (P < .001 for trend). Conclusions and Relevance In Denmark, antithrombotic drug use was associated with higher risk of subdural hematoma; and the highest odds of subdural hematoma was associated with combined use of a VKA and an antiplatelet drug. The increased incidence of subdural hematoma from 2000 to 2015 appears to be associated with the increased use of antithrombotic drugs, particularly use of a VKA among older patients.


PLOS ONE | 2016

Establishment and Characterization of a Tumor Stem Cell-Based Glioblastoma Invasion Model

Stine Skov Jensen; Morten Meyer; Stine Asferg Petterson; Bo Halle; Ann Mari Rosager; Charlotte Aaberg-Jessen; Mads Thomassen; Mark Burton; Torben A. Kruse; Bjarne Winther Kristensen

Aims Glioblastoma is the most frequent and malignant brain tumor. Recurrence is inevitable and most likely connected to tumor invasion and presence of therapy resistant stem-like tumor cells. The aim was therefore to establish and characterize a three-dimensional in vivo-like in vitro model taking invasion and tumor stemness into account. Methods Glioblastoma stem cell-like containing spheroid (GSS) cultures derived from three different patients were established and characterized. The spheroids were implanted in vitro into rat brain slice cultures grown in stem cell medium and in vivo into brains of immuno-compromised mice. Invasion was followed in the slice cultures by confocal time-lapse microscopy. Using immunohistochemistry, we compared tumor cell invasion as well as expression of proliferation and stem cell markers between the models. Results We observed a pronounced invasion into brain slice cultures both by confocal time-lapse microscopy and immunohistochemistry. This invasion closely resembled the invasion in vivo. The Ki-67 proliferation indexes in spheroids implanted into brain slices were lower than in free-floating spheroids. The expression of stem cell markers varied between free-floating spheroids, spheroids implanted into brain slices and tumors in vivo. Conclusion The established invasion model kept in stem cell medium closely mimics tumor cell invasion into the brain in vivo preserving also to some extent the expression of stem cell markers. The model is feasible and robust and we suggest the model as an in vivo-like model with a great potential in glioma studies and drug discovery.


The Journal of Nuclear Medicine | 2015

Estimation of Tumor Volumes by 11C-MeAIB and 18F-FDG PET in an Orthotopic Glioblastoma Rat Model

Bo Halle; Helge Thisgaard; Svend Hvidsten; Johan H. Dam; Charlotte Aaberg-Jessen; Anne Suhr Thykjaer; Poul Flemming Høilund-Carlsen; Mette Katrine Schulz; Claus Yding Andersen; Bjarne Winther Kristensen

Brain tumor volume assessment is a major challenge. Molecular imaging using PET may be a promising option because it reflects the biologically active cells. We compared the agreement between PET- and histology-derived tumor volumes in an orthotopic glioblastoma rat model with a noninfiltrating (U87MG) and an infiltrating (T87) tumor phenotype using 2 different radiotracers, 2 different image reconstruction algorithms, parametric imaging, and 2 different image segmentation techniques. Methods: Rats with U87MG- and T87-derived glioblastomas were continuously scanned with PET for 1 h starting immediately after the injection of 11C-methylaminoisobutyric acid (11C-MeAIB). One hour later, 18F-FDG was injected, followed by a 3-h dynamic PET scan. Images were reconstructed using 2-dimensional ordered-subsets expectation maximization and 3-dimensional maximum a posteriori probability (MAP3D) algorithms. In addition, a parametric image, encompassing the entire tumor kinetics in a single image, was calculated on the basis of the 11C-MeAIB images. All reconstructed images were segmented by fixed thresholding of maximum voxel intensity (VImax) and mean background intensity. The agreement between PET- and histology-derived tumor volumes and intra- and interobserver agreement of the PET-derived volumes were evaluated using Bland–Altman plots. Results: By PET, the mean U87MG tumor volume was 35.0 mm3 using 18F-FDG and 34.1 mm3 with 11C-MeAIB, compared with 33.7 mm3 by histology. Corresponding T87 tumor volumes were 122.1 mm3 using 18F-FDG, 118.3 mm3 with 11C-MeAIB, and 125.4 mm3 by histology. None of these volumes were significantly different. The best agreement between PET- and histology-derived U87MG tumor volumes was achieved with 11C-MeAIB, MAP3D reconstruction, and fixed thresholding of VImax. The intra- and interobserver agreement was high using this method. For T87 tumors, the best agreement between PET- and histology-derived volumes was obtained using 18F-FDG, MAP3D reconstruction, and fixed thresholding of mean background intensity. The agreement using 11C-MeAIB, parametric imaging, and fixed thresholding of VImax was slightly inferior, but the intra- and interobserver agreement was clearly superior. Conclusion: Estimation of tumor volume by PET of noninfiltrating brain tumors was accurate and reproducible. In contrast, tumor volume estimation by PET of infiltrating brain tumors was difficult and hard to reproduce. On the basis of our results, PET evaluation of highly infiltrating brain tumors should be further developed.


Pharmacoepidemiology and Drug Safety | 2016

Subdural hematoma cases identified through a Danish patient register: diagnosis validity, clinical characteristics, and preadmission antithrombotic drug use

Frantz Rom Poulsen; Bo Halle; Anton Pottegård; Luis A. García Rodríguez; Jesper Hallas; David Gaist

This study aimed to assess the usefulness of Danish patient registers for epidemiological studies of subdural hematoma (SDH) and to describe clinical characteristics of validated cases.


Journal of Neuro-oncology | 2017

Shift of microRNA profile upon glioma cell migration using patient-derived spheroids and serum-free conditions

Sune Munthe; Bo Halle; Henning B. Boldt; Helle Christiansen; Steffen Schmidt; Vivek Kaimal; Jessica Xu; Sonya Zabludoff; Jan Mollenhauer; Frantz Rom Poulsen; Bjarne Winther Kristensen

Glioblastoma multiforme (GBM) is the most frequent malignant primary brain tumor. A major reason for the overall median survival being only 14.6 months is migrating tumor cells left behind after surgery. Another major reason is tumor cells having a so-called cancer stem cell phenotype being therefore resistant towards traditional chemo- and radiotherapy. A group of novel molecular targets are microRNAs (miRNAs). MiRNAs are small non-coding RNAs exerting post-transcriptional regulation of gene expression. The aim of this study was to identify differentially expressed miRNAs in migrating GBM cells using serum-free stem cell conditions. We used patient-derived GBM spheroid cultures for a novel serum-free migration assay. MiRNA expression of migrating tumor cells isolated at maximum migration speed was compared with corresponding spheroids using an OpenArray Real-Time PCR System. The miRNA profiling revealed 30 miRNAs to be differentially expressed. In total 13 miRNAs were upregulated and 17 downregulated in migrating cells compared to corresponding spheroids. The three most deregulated miRNAs, miR-1227 (up-regulated), miR-32 (down-regulated) and miR-222 (down-regulated), were experimentally overexpressed. A non-significantly increased migration rate was observed after miR-1227 overexpression. A significantly reduced migration rate was observed after miR-32 and miR-222 overexpression. In conclusion a shift in microRNA profile upon glioma cell migration was identified using an assay avoiding serum-induced migration. Both the miRNA profiling and the functional validation suggested that miR-1227 may be associated with increased migration and miR-32 and miR-222 with decreased migration. These miRNAs may represent potential novel targets in migrating glioma cells.


Journal of Neuro-oncology | 2016

Shift of microRNA profile upon orthotopic xenografting of glioblastoma spheroid cultures

Bo Halle; Mads Thomassen; Ranga Venkatesan; Vivek Kaimal; Eric G. Marcusson; Sune Munthe; Mia D. Sørensen; Charlotte Aaberg-Jessen; Stine Skov Jensen; Morten Meyer; Torben A. Kruse; Helle Christiansen; Steffen Schmidt; Jan Mollenhauer; Mette Katrine Schulz; Claus Yding Andersen; Bjarne Winther Kristensen

Glioblastomas always recur despite surgery, radiotherapy and chemotherapy. A key player in the therapeutic resistance may be immature tumor cells with stem-like properties (TSCs) escaping conventional treatment. A group of promising molecular targets are microRNAs (miRs). miRs are small non-coding RNAs exerting post-transcriptional regulation of gene expression. In this study we aimed to identify over-expressed TSC-related miRs potentially amenable for therapeutic targeting. We used non-differentiated glioblastoma spheroid cultures (GSCs) containing TSCs and compared these to xenografts using a NanoString nCounter platform. This revealed 19 over-expressed miRs in the non-differentiated GSCs. Additionally, non-differentiated GSCs were compared to neural stem cells (NSCs) using a microarray platform. This revealed four significantly over-expressed miRs in the non-differentiated GSCs in comparison to the NSCs. The three most over-expressed miRs in the non-differentiated GSCs compared to xenografts were miR-126, -137 and -128. KEGG pathway analysis suggested the main biological function of these over-expressed miRs to be cell-cycle arrest and diminished proliferation. To functionally validate the profiling results suggesting association of these miRs with stem-like properties, experimental over-expression of miR-128 was performed. A consecutive limiting dilution assay confirmed a significantly elevated spheroid formation in the miR-128 over-expressing cells. This may provide potential therapeutic targets for anti-miRs to identify novel treatment options for GBM patients.


Journal of Neuro-oncology | 2016

Comparative studies of TIMP-1 immunohistochemistry, TIMP-1 FISH analysis and plasma TIMP-1 in glioblastoma patients

Charlotte Aaberg-Jessen; Bo Halle; Stine Skov Jensen; Sven Müller; Unni Maria Rømer; Christian Bonde Pedersen; Nils Brünner; Bjarne Winther Kristensen

Tissue inhibitor of metalloproteinases-1 (TIMP-1) has been associated with poor prognosis and resistance towards chemotherapy in several cancer forms. In a previous study we found an association between a low TIMP-1 tumor immunoreactivity and increased survival for glioblastoma patients, when compared to moderate and high TIMP-1 tumor immunoreactivity. The aim of the present study was to further evaluate TIMP-1 as a biomarker in gliomas by studying TIMP-1 gene copy numbers by fluorescence in situ hybridization (FISH) on 33 glioblastoma biopsies and by measuring levels of TIMP-1 in plasma obtained pre-operatively from 43 patients (31 gliomas including 21 glioblastomas) by enzyme-linked immunosorbent assay (ELISA). The results showed TIMP-1 gene copy numbers per cell ranging from 1 to 5 and the TIMP-1/CEN-X ratio ranging between 0.7 and 1.09, suggesting neither amplification nor loss of the TIMP-1 gene. The TIMP-1 protein levels measured in plasma were not significantly higher than TIMP-1 levels measured in healthy subjects. No correlation was identified between TIMP-1 tumor cell immunoreactivities and the TIMP-1 gene copy numbers or the plasma TIMP-1 levels. In conclusion, high immunohistochemical TIMP-1 protein levels in glioblastomas were not caused by TIMP-1 gene amplification and TIMP-1 in plasma was low and not directly related to tumor TIMP-1 immunoreactivity. The study suggests that TIMP-1 immunohistochemistry is the method of choice for future clinical studies evaluating TIMP-1 as a biomarker in glioblastomas.


Pathology & Oncology Research | 2017

Overexpression of TIMP-1 and Sensitivity to Topoisomerase Inhibitors in Glioblastoma Cell Lines

Charlotte Aaberg-Jessen; Louise Fogh; Mia D. Sørensen; Bo Halle; Nils Brünner; Bjarne Winther Kristensen

The multifunctional protein - tissue inhibitor of metalloproteinases-1 (TIMP-1) - has been associated with a poor prognosis in several types of cancers including glioblastomas. In addition, TIMP-1 has been associated with decreased response to chemotherapy, and especially the efficacy of the family of topoisomerase (TOP) inhibitors has been related to TIMP-1. As a second line treatment of glioblastomas, the vascular endothelial growth factor (VEGF) antibody bevacizumab is administered in combination with the TOP1 inhibitor irinotecan and glioblastoma cell levels of TIMP-1 could therefore potentially influence the efficacy of such treatment. In the present study, we aimed to investigate whether a high TIMP-1 expression in glioblastoma cell lines would affect the sensitivity to TOP inhibitors, and whether TIMP-1 overexpressing cells would have alterered growth and invasion. We established TIMP-1 overexpressing subclones from two human glioblastoma cell lines. TIMP-1 overexpressing U87MG cells were significantly more resistant than low TIMP-1 expressing clones and parental cells when exposed to SN-38 (TOP1 inhibitor) or epirubicin (TOP2 inhibitor). No significant differences were observed for the TIMP-1 transfected A172 cells. Implantation of both U87MG and A172 spheroids into organotypic brain slice cultures revealed a reduced growth of TIMP-1 overexpressing U87MG spheroids, however, no significant differences in invasion were observed. The present study suggests that TIMP-1 overexpression reduces the effect of TOP inhibitors in glioblastoma. TIMP-1 also appeared to reduce spheroid growth, but did not influence invasion. Whether TIMP-1 plays a role in irinotecan resistance and has a predictive potential in glioblastoma patients remains to be elucidated.


Clinical Neurology and Neurosurgery | 2014

Perindopril and residual chronic subdural hematoma volumes six weeks after burr hole surgery: A randomized trial

Frantz Rom Poulsen; Sune Munthe; Morten Søe; Bo Halle


Journal of Neuro-oncology | 2016

Convection-enhanced delivery of an anti-miR is well-tolerated, preserves anti-miR stability and causes efficient target de-repression: a proof of concept.

Bo Halle; Eric G. Marcusson; Charlotte Aaberg-Jessen; Stine Skov Jensen; Morten Meyer; Mette Katrine Schulz; Claus Yding Andersen; Bjarne Winther Kristensen

Collaboration


Dive into the Bo Halle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helge Thisgaard

Odense University Hospital

View shared research outputs
Top Co-Authors

Avatar

Stine Skov Jensen

Odense University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sune Munthe

Odense University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johan Hygum Dam

Odense University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge