Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bo-Hyun Moon is active.

Publication


Featured researches published by Bo-Hyun Moon.


Stem Cells | 2009

Senescent growth arrest in mesenchymal stem cells is bypassed by Wip1-mediated downregulation of intrinsic stress signaling pathways.

Ji-Seon Lee; Mi-Ok Lee; Bo-Hyun Moon; Sung Han Shim; Albert J. Fornace; Hyuk-Jin Cha

Human mesenchymal stem cells (hMSCs) have been widely studied as a source of primary adult stem cells for cell therapy because of their multidifferentiation potential; however, the growth arrest (also known as “premature senescence”) often found in hMSCs cultured in vitro has been a major obstacle to the in‐depth characterization of these cells. In addition, the inability to maintain constant cell growth hampers the development of additional genetic modifications aimed at achieving desired levels of differentiation to specific tissues; however, the molecular mechanisms that govern this phenomenon remain unclear, with the exception of a few studies demonstrating that induction of p16INK4a is responsible for this senescence‐like event. Here, we observed that the premature growth arrest in hMSCs occurs in parallel with the induction of p16INK4a, following abrogation of inhibitory phosphorylation of retinoblastoma protein. These stress responses were concurrent with increased formation of reactive oxygen species (ROSs) from mitochondria and increased p38 mitogen‐activated protein kinase (MAPK) activity. The introduction of Wip1 (wild‐type p53 inducible phosphatase‐1), a well‐studied stress modulator, significantly lowered p16INK4a expression and led to p38 MAPK inactivation, although it failed to affect the levels of ROSs. Moreover, the suppression of stress responses by Wip1 apparently extended the life span of hMSCs, compared with control conditions, while maintaining their multilineage differentiation potential. Based on these results, we suggest that senescent growth arrest in hMSCs may result from activation of stress signaling pathways and consequent onset of stress responses, due in part to ROS production during prolonged in vitro culture. STEM CELLS 2009;27:1963–1975


Alcoholism: Clinical and Experimental Research | 2014

Modulation of fatty acid and bile acid metabolism by peroxisome proliferator-activated receptor α protects against alcoholic liver disease.

Heng-Hong Li; John B. Tyburski; Yiwen Wang; Steve Strawn; Bo-Hyun Moon; Bhaskar Kallakury; Frank J. Gonzalez; Albert J. Fornace

BACKGROUND Chronic alcohol intake affects liver function and causes hepatic pathological changes. It has been shown that peroxisome proliferator-activated receptor α (PPARα)-null mice developed more pronounced hepatic changes than wild-type (WT) mice after chronic exposure to a diet containing 4% alcohol. The remarkable similarity between the histopathology of alcoholic liver disease (ALD) in Ppara-null model and in humans, and the fact that PPARα expression and activity in human liver are less than one-tenth of those in WT mouse liver make Ppara-null a good system to investigate ALD. METHODS In this study, the Ppara-null model was used to elucidate the dynamic regulation of PPARα activity during chronic alcohol intake. Hepatic transcriptomic and metabolomic analyses were used to examine alterations of gene expression and metabolites associated with pathological changes. The changes triggered by alcohol consumption on gene expression and metabolites in Ppara-null mice were compared with those in WT mice. RESULTS The results showed that in the presence of PPARα, 3 major metabolic pathways in mitochondria, namely the fatty acid β-oxidation, the tricarboxylic acid cycle, and the electron transfer chain, were induced in response to a 2-month alcohol feeding, while these responses were greatly reduced in the absence of PPARα. In line with the transcriptional modulations of these metabolic pathways, a progressive accumulation of triglycerides, a robust increase in hepatic cholic acid and its derivatives, and a strong induction of fibrogenesis genes were observed exclusively in alcohol-fed Ppara-null mice. CONCLUSIONS These observations indicate that PPARα plays a protective role to enhance mitochondrial function in response to chronic alcohol consumption by adaptive transcriptional activation and suggest that activation of this nuclear receptor may be of therapeutic value in the treatment for ALD.


Stem Cell Reviews and Reports | 2012

Generation of Cancerous Neural Stem Cells Forming Glial Tumor by Oncogenic Stimulation

Ji-Seon Lee; Hong Jun Lee; Bo-Hyun Moon; Seung-Hyun Song; Mi-Ok Lee; Sung Han Shim; Hyung-Seok Kim; Min-Cheol Lee; Jeong Taik Kwon; Albert J. Fornace; Seung U. Kim; Hyuk Jin Cha

Neural stem cells in the brain have been shown to be ‘cells of origin’ of certain brain cancers, most notably astrocytomas and medulloblastoma. In particular, in a mouse model, the targeting of genetic modifications for astrocytoma-relevant tumor suppressors to neural stem cells causes malignant astrocytoma to arise, thereby suggesting that astrocytoma is derived from neural stem cells. However, it remains to be determined whether this important finding is reproducible in humans. Herein, we generated cancerous neural stem cells by introducing a set of oncogenes to human fetal neural stem cells (hfNSCs). Serial genetic modification with v-myc for immortalization and consequent H-Ras for oncogenic stimulation with viral gene delivery proved sufficient to induce the transformation of hfNSCs. The resultant F3.Ras cells evidenced a variety of the hallmarks of brain cancer stem cells and most importantly were tumorigenic, forming brain cancers consisting of both a large number of differentiated and a very few undifferentiated populations of cells in an in vivo mouse model. On the contrary, oligodendrocytes derived from the v-myc expressing parent neural stem cells were not transformed by H-Ras, which suggests that neural stem cells may be more susceptible to cancerous transformation by a combination of oncogenes. We also determined that v-myc expressing fetal neural stem cells were defective in p53 response upon the introduction of H-Ras; this finding suggests that an insufficient p53-dependent tumor suppressive mechanism would be associated with high oncogenic susceptibility to H-Ras introduction.


Stem Cells | 2010

Zap70 functions to maintain stemness of mouse embryonic stem cells by negatively regulating Jak1/Stat3/c-Myc signaling

Young Cha; Bo-Hyun Moon; Mi-Ok Lee; Hee-Jin Ahn; Hye‐jin Lee; Kyung-Ah Lee; Albert J. Fornace; Kwang-Soo Kim; Hyuk-Jin Cha; Kyung-Soon Park

Zeta‐chain‐associated protein kinase‐70 (Zap70), a Syk family tyrosine kinase, has been reported to be present exclusively in normal T‐cells, natural killer cells, and B cells, serving as a pivotal regulator of antigen‐mediated receptor signaling and development. In this study, we report that Zap70 is expressed in undifferentiated mouse embryonic stem cells (mESCs) and may critically regulate self‐renewal and pluripotency in mESCs. We found that Zap70 knocked‐down mESCs (Zap70KD) show sustained self‐renewal and defective differentiation. In addition, we present evidence that the sustained self‐renewal in Zap70KD is associated with enhanced Jak/Stat3 signaling and c‐Myc induction. These altered signaling appears to result from upregulated leukemia inhibitory factor receptor and downregulated src homology region 2 domain containing phosphatase 1 (SHP‐1) phosphatase activity. On the basis of these results, we propose that in undifferentiated mESCs, Zap70 plays important roles in modulating the balance between self‐renewal capacity and pluripotent differentiation ability as a key regulator of the Jak/Stat3/c‐Myc signaling pathway. Stem Cells 2010; 28:1476–1486.


Radiation Oncology | 2012

Exposure to ionizing radiation induced persistent gene expression changes in mouse mammary gland

Kamal Datta; Daniel R. Hyduke; Shubhankar Suman; Bo-Hyun Moon; Michael D. Johnson; Albert J. Fornace

BackgroundBreast tissue is among the most sensitive tissues to the carcinogenic actions of ionizing radiation and epidemiological studies have linked radiation exposure to breast cancer. Currently, molecular understanding of radiation carcinogenesis in mammary gland is hindered due to the scarcity of in vivo long-term follow up data. We undertook this study to delineate radiation-induced persistent alterations in gene expression in mouse mammary glands 2-month after radiation exposure.MethodsSix to eight week old female C57BL/6J mice were exposed to 2 Gy of whole body γ radiation and mammary glands were surgically removed 2-month after radiation. RNA was isolated and microarray hybridization performed for gene expression analysis. Ingenuity Pathway Analysis (IPA) was used for biological interpretation of microarray data. Real time quantitative PCR was performed on selected genes to confirm the microarray data.ResultsCompared to untreated controls, the mRNA levels of a total of 737 genes were significantly (p<0.05) perturbed above 2-fold of control. More genes (493 genes; 67%) were upregulated than the number of downregulated genes (244 genes; 33%). Functional analysis of the upregulated genes mapped to cell proliferation and cancer related canonical pathways such as ‘ERK/MAPK signaling’, ‘CDK5 signaling’, and ‘14-3-3-mediated signaling’. We also observed upregulation of breast cancer related canonical pathways such as ‘breast cancer regulation by Stathmin1’, and ‘HER-2 signaling in breast cancer’ in IPA. Interestingly, the downregulated genes mapped to fewer canonical pathways involved in cell proliferation. We also observed that a number of genes with tumor suppressor function (GPRC5A, ELF1, NAB2, Sema4D, ACPP, MAP2, RUNX1) persistently remained downregulated in response to radiation exposure. Results from qRT-PCR on five selected differentially expressed genes confirmed microarray data. The PCR data on PPP4c, ELF1, MAPK12, PLCG1, and E2F6 showed similar trend in up and downregulation as has been observed with the microarray.ConclusionsExposure to a clinically relevant radiation dose led to long-term activation of mammary gland genes involved in proliferative and metabolic pathways, which are known to have roles in carcinogenesis. When considered along with downregulation of a number of tumor suppressor genes, our study has implications for breast cancer initiation and progression after therapeutic radiation exposure.


Radiation Research | 2014

High-Energy Particle-Induced Tumorigenesis Throughout the Gastrointestinal Tract

Daniela Trani; Scott A. Nelson; Bo-Hyun Moon; Jan J. Swedlow; Elizabeth M. Williams; Steven J. Strawn; Paul L. Appleton; Bhaskar Kallakury; Inke S. Näthke; Albert J. Fornace

Epidemiological data reveals the gastrointestinal (GI) tract as one of the main sites for low-LET radiation-induced cancers. Importantly, the use of particle therapy is increasing, but cancer risk by high-LET particles is still poorly understood. This gap in our knowledge also remains a major limiting factor in planning long-term space missions. Therefore, assessing risks and identifying predisposing factors for carcinogenesis induced by particle radiation is crucial for both astronauts and cancer survivors. We have previously shown that exposure to relatively high doses of high-energy 56Fe ions induced higher intestinal tumor frequency and grade in the small intestine of ApcMin/+ mice than γ rays. However, due to the high number of spontaneous lesions (∼30) that develop in ApcMin/+ animals, this Apc mutant model is not suitable to investigate effects of cumulative doses <1 Gy, which are relevant for risk assessment in astronauts and particle radiotherapy patients. However, Apc1638N/+ mice develop a relatively small number of spontaneous lesions (∼3 per animal) in both small intestine and colon, and thus we propose a better model for studies on radiation-induced carcinogenesis. Here, we investigated model particle radiation increases tumor frequency and grade in the entire gastrointestinal tract (stomach and more distal intestine) after high- and low-radiation doses whether in the Apc1638N/+. We have previously reported that an increase in small intestinal tumor multiplicity after exposure to γ rays was dependent on gender in Apc1638N/+ mice, and here we investigated responses to particle radiation in the same model. Phenotypical and histopathological observations were accompanied by late changes in number and position of mitotic cells in intestinal crypts from animals exposed to different radiation types.


Radiation Research | 2016

An Integrated Multi-Omic Approach to Assess Radiation Injury on the Host-Microbiome Axis

Maryam Goudarzi; Tytus D. Mak; Jonathan P. Jacobs; Bo-Hyun Moon; Steven J. Strawn; Jonathan Braun; David J. Brenner; Albert J. Fornace; Heng-Hong Li

Medical responders to radiological and nuclear disasters currently lack sufficient high-throughput and minimally invasive biodosimetry tools to assess exposure and injury in the affected populations. For this reason, we have focused on developing robust radiation exposure biomarkers in easily accessible biofluids such as urine, serum and feces. While we have previously reported on urine and serum biomarkers, here we assessed perturbations in the fecal metabolome resulting from exposure to external X radiation in vivo. The gastrointestinal (GI) system is of particular importance in radiation biodosimetry due to its constant cell renewal and sensitivity to radiation-induced injury. While the clinical GI symptoms such as pain, bloating, nausea, vomiting and diarrhea are manifested after radiation exposure, no reliable bioindicator has been identified for radiation-induced gastrointestinal injuries. To this end, we focused on determining a fecal metabolomic signature in X-ray irradiated mice. There is overwhelming evidence that the gut microbiota play an essential role in gut homeostasis and overall health. Because the fecal metabolome is tightly correlated with the composition and diversity of the microorganism in the gut, we also performed fecal 16S rRNA sequencing analysis to determine the changes in the microbial composition postirradiation. We used in-house bioinformatics tools to integrate the 16S rRNA sequencing and metabolomic data, and to elucidate the gut integrated ecosystem and its deviations from a stable host-microbiome state that result from irradiation. The 16S rRNA sequencing results indicated that radiation caused remarkable alterations of the microbiome in feces at the family level. Increased abundance of common members of Lactobacillaceae and Staphylococcaceae families, and decreased abundances of Lachnospiraceae, Ruminococcaceae and Clostridiaceae families were found after 5 and 12 Gy irradiation. The metabolomic data revealed statistically significant changes in the microbial-derived products such as pipecolic acid, glutaconic acid, urobilinogen and homogentisic acid. In addition, significant changes were detected in bile acids such as taurocholic acid and 12-ketodeoxycholic acid. These changes may be associated with the observed shifts in the abundance of intestinal microbes, such as R. gnavus, which can transform bile acids.


Radiation Research | 2015

Metabolomic Profiling of Urine Samples from Mice Exposed to Protons Reveals Radiation Quality and Dose Specific Differences

Evagelia C. Laiakis; Daniela Trani; Bo-Hyun Moon; Steven J. Strawn; Albert J. Fornace

As space travel is expanding to include private tourism and travel beyond low-Earth orbit, so is the risk of exposure to space radiation. Galactic cosmic rays and solar particle events have the potential to expose space travelers to significant doses of radiation that can lead to increased cancer risk and other adverse health consequences. Metabolomics has the potential to assess an individuals risk by exploring the metabolic perturbations in a biofluid or tissue. In this study, C57BL/6 mice were exposed to 0.5 and 2 Gy of 1 GeV/nucleon of protons and the levels of metabolites were evaluated in urine at 4 h after radiation exposure through liquid chromatography coupled to time-of-flight mass spectrometry. Significant differences were identified in metabolites that map to the tricarboxylic acid (TCA) cycle and fatty acid metabolism, suggesting that energy metabolism is severely impacted after exposure to protons. Additionally, various pathways of amino acid metabolism (tryptophan, tyrosine, arginine and proline and phenylalanine) were affected with potential implications for DNA damage repair and cognitive impairment. Finally, presence of products of purine and pyrimidine metabolism points to direct DNA damage or increased apoptosis. Comparison of these metabolomic data to previously published data from our laboratory with gamma radiation strongly suggests a more pronounced effect on metabolism with protons. This is the first metabolomics study with space radiation in an easily accessible biofluid such as urine that further investigates and exemplifies the biological differences at early time points after exposure to different radiation qualities.


International Journal of Radiation Oncology Biology Physics | 2013

Sex-dependent differences in intestinal tumorigenesis induced in Apc1638N/+ mice by exposure to γ rays.

Daniela Trani; Bo-Hyun Moon; Bhaskar Kallakury; Dan P. Hartmann; Kamal Datta; Albert J. Fornace

PURPOSE The purpose of the present study was to assess the effect of 1 and 5 Gy radiation doses and to investigate the interplay of gender and radiation with regard to intestinal tumorigenesis in an adenomatous polyposis coli (APC) mutant mouse model. METHODS AND MATERIALS Apc1638N/+ female and male mice were exposed whole body to either 1 Gy or 5 Gy of γ rays and euthanized when most of the treated mice became moribund. Small and large intestines were processed to determine tumor burden, distribution, and grade. Expression of proliferation marker Ki-67 and estrogen receptor (ER)-α were also assessed by immunohistochemistry. RESULTS We observed that, with both 1 Gy and 5 Gy of γ rays, females displayed reduced susceptibility to radiation-induced intestinal tumorigenesis compared with males. As for radiation effect on small intestinal tumor progression, although no substantial differences were found in the relative frequency and degree of dysplasia of adenomas in irradiated animals compared with controls, invasive carcinomas were found in 1-Gy- and 5-Gy-irradiated animals. Radiation exposure was also shown to induce an increase in protein levels of proliferation marker Ki-67 and sex-hormone receptor ER-α in both non tumor mucosa and intestinal tumors from irradiated male mice. CONCLUSIONS We observed important sex-dependent differences in susceptibility to radiation-induced intestinal tumorigenesis in Apc1638N/+ mutants. Furthermore, our data provide evidence that exposure to radiation doses as low as 1 Gy can induce a significant increase in intestinal tumor multiplicity as well as enhance tumor progression in vivo.


Radiation Research | 2014

Wip1 Abrogation Decreases Intestinal Tumor Frequency in APCMin/+ Mice Irrespective of Radiation Quality

Shubhankar Suman; Bo-Hyun Moon; Hemang Thakor; Albert J. Fornace; Kamal Datta

Low-linear energy transfer (low-LET) γ-ray exposure is a risk factor for colorectal cancer (CRC). Due to their high-LET nature, energetic iron ions found in space are expected to pose greater CRC risks to astronauts undertaking long-duration space missions beyond low Earth orbit. Wild-type p53-induced phosphatase 1 (Wip1) is important for cellular DNA damage response and its abrogation has been shown to inhibit spontaneous intestinal tumorigenesis in APCMin/+ mice, a well-studied mouse model of human CRC. However, the relationship of Wip1 to radiation-induced intestinal tumorigenesis, especially by energetic iron ions, has not been investigated in APCMin/+ mice. We have previously reported that there is a greater intestinal tumorigenic potential of iron-ion radiation relative to 137Cs γ rays, so the purpose of the current study was to investigate whether Wip1 abrogation could influence high-LET dependent intestinal tumorigenesis in APCMin/+ mice. Intestinal tumor frequency and grade were assessed in APCMin/+/Wip1–/– mice and results were compared to those in APCMin/+/Wip1+/+ mice after exposure to a mean absorbed dose of 2 Gy from 137Cs γ rays or 1.6 Gy from 1 GeV/n iron ions. Cellular differentiation and proliferation were also assessed in the intestinal tumors of sham-irradiated and irradiated mice. Decreased tumor frequency and lower tumor grade were observed in APCMin/+/Wip1–/– relative to APCMin/+/Wip1+/+ mice. Notably, a similar decrease (∼6-fold in both groups) in tumor number was observed in sham-irradiated and γ-irradiated APCMin/+/Wip1–/– relative to APCMin/+/Wip1+/+ mice. However, tumorigenesis in the energetic iron-ion exposed group was reduced ∼8-fold in APCMin/+/Wip1–/– relative to APCMin/+/Wip1+/+ mice. A significantly lower proliferation/differentiation index in tumors of iron-ion exposed APCMin/+/Wip1–/– relative to APCMin/+/Wip1+/+ mice suggests that reduced proliferation and enhanced differentiation as a result of Wip1 abrogation maybe involved. In conclusion, the current study demonstrated that the absence of Wip1 blocked radiation-induced intestinal tumorigenesis irrespective of radiation quality and has implications for developing preventive strategies against the tumorigenic potential of radiation exposure on earth and in outer space.

Collaboration


Dive into the Bo-Hyun Moon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge