Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bo K. Siesjö is active.

Publication


Featured researches published by Bo K. Siesjö.


Acta Neuropathologica | 1984

The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia

Maj-Lis Smith; R. N. Auer; Bo K. Siesjö

SummaryThe density and distribution of brain damage after 2–10 min of cerebral ischemia was studied in the rat. Ischemia was produced by a combination of carotid clamping and hypotension, followed by 1 week recovery. The brains were perfusion-fixed with formaldehyde, embedded in paraffin, subserially sectioned, and stained with acid fuchsin/cresyl violet. The number of necrotic neurons in the cerebral cortex, hippocampus, and caudate nucleus was assessed by direct visual counting.Somewhat unexpectedly, mild brain damage was observed in some animals already after 2 min, and more consistently after 4 min of ischemia. This damage affected CA4 and CA1 pyramids in the hippocampus, and neurons in the subiculum. Necrosis of neocortical cells began to appear after 4 min and CA3 hippocampal damage after 6 min of ischemia, while neurons in the caudoputamen were affected first after 8–10 min.Selective neuronal necrosis of the cerebral cortex worsened into infarction after higher doses of insult. Damage was worst over the superolateral convexity of the hemisphere, in the middle laminae of the cerebral cortex. The caudate nucleus showed geographically demarcated zones of selective neuronal necrosis, damage to neurons in the dorsolateral portion showing an all-or-none pattern. Other structures involved included the amygdaloid, the thalamic reticular nucleus, the septal nuclei, the pars reticularis of the substantia nigra, and the cerebellar vermis.


Stroke | 1998

Calcium in Ischemic Cell Death

Tibor Kristián; Bo K. Siesjö

BACKGROUND This review article deals with the role of calcium in ischemic cell death. A calcium-related mechanism was proposed more than two decades ago to explain cell necrosis incurred in cardiac ischemia and muscular dystrophy. In fact, an excitotoxic hypothesis was advanced to explain the acetylcholine-related death of muscle end plates. A similar hypothesis was proposed to explain selective neuronal damage in the brain in ischemia, hypoglycemic coma, and status epilepticus. SUMMARY OF REVIEW The original concepts encompass the hypothesis that cell damage in ischemia-reperfusion is due to enhanced activity of phospholipases and proteases, leading to release of free fatty acids and their breakdown products and to degradation of cytoskeletal proteins. It is equally clear that a coupling exists between influx of calcium into cells and their production of reactive oxygen species, such as .O2, H2O2, and .OH. Recent results have underscored the role of calcium in ischemic cell death. A coupling has been demonstrated among glutamate release, calcium influx, and enhanced production of reactive metabolites such as .O2-, .OH, and nitric oxide. It has become equally clear that the combination of .O2- and nitric oxide can yield peroxynitrate, a metabolite with potentially devastating effects. The mitochondria have again come into the focus of interest. This is because certain conditions, notably mitochondrial calcium accumulation and oxidative stress, can trigger the assembly (opening) of a high-conductance pore in the inner mitochondrial membrane. The mitochondrial permeability transition (MPT) pore leads to a collapse of the electrochemical potential for H+, thereby arresting ATP production and triggering production of reactive oxygen species. The occurrence of an MPT in vivo is suggested by the dramatic anti-ischemic effect of cyclosporin A, a virtually specific blocker of the MPT in vitro in transient forebrain ischemia. However, cyclosporin A has limited effect on the cell damage incurred as a result of 2 hours of focal cerebral ischemia, suggesting that factors other than MPT play a role. It is discussed whether this could reflect the operation of phospholipase A2 activity and degradation of the lipid skeleton of the inner mitochondrial membrane. CONCLUSIONS Calcium is one of the triggers involved in ischemic cell death, whatever the mechanism.


Acta Neurologica Scandinavica | 1984

Models for studying long-term recovery following forebrain ischemia in the rat. 2. A 2-vessel occlusion model

Maj-Lis Smith; George Bendek; Nils Dahlgren; Ingmar Rosén; Tadeusz Wieloch; Bo K. Siesjö

ABSTRACT— A model is described in which transient ischemia is induced in rats anaesthetized with N2O:O2 (70:30) by bilateral carotid artery clamping combined with a lowering of mean arterial blood pressure to 50 mm Hg, the latter being achieved by bleeding, or by bleeding supplemented with administration of trimetaphan or phentolamine. By the use of intubation, muscle paralysis with suxamethonium chloride, and insertion of tail arterial and venous catheters, it was possible to induce reversible ischemia for long‐term recovery studies.


Journal of Neurochemistry | 1973

OPTIMAL FREEZING CONDITIONS FOR CEREBRAL METABOLITES IN RATS

U. Pontén; R. A. Ratcheson; L. G. Salford; Bo K. Siesjö

Abstract— Optimal freezing conditions for metabolites were evaluated in 250‐450 g rats. As a standard procedure, the brains were frozen in such a way that the blood pressure and arterial oxygenation were upheld during the freezing. The progression of the freezing front was determined by means of implanted thermocouples, and the interruption of the circulation by means of injections of carbon particles into the blood stream. The freezing gave rise to a rapid interruption of the circulation in the superficial cortical layer first reached by the freezing front well before the temperature reached 0°C. In deeper regions the progression of the freezing front was slower and interruption of the circulation occurred simultaneously with the freezing of the tissue. Measurements of labile cerebral metabolites, including phosphocreatine, ATP, ADP, AMP and lactate, failed to show signs of autolysis in the part of cortex which became unperfused at temperatures above zero. Since the energy state was identical in superficial cortical areas and in areas that did not freeze until after 40–90 s, it is concluded that the freezing technique gives optimal conditions for metabolites also in deep cerebral structures.


Journal of Cerebral Blood Flow and Metabolism | 1981

Brain Lactic Acidosis and Ischemic Cell Damage: 1. Biochemistry and Neurophysiology

Stig Rehncrona; Ingmar Rosén; Bo K. Siesjö

This study explores the influence of severe lactic acidosis in the ischemic rat brain on postischemic recovery of the tissue energy state and neurophysiological parameters. Severe incomplete brain ischemia (cerebral blood flow below 5% of normal) was induced by bilateral carotid artery clamping combined with hypovolemic hypotension. We varied the production of lactate in the tissue by manipulating the blood glucose concentrations. A 30-min period of incomplete ischemia induced in food-deprived animals caused lactate to accumulate to 15–16 μmol g−1 in cortical tissue. Upon recirculation these animals showed: (1) a considerable recovery of the cortical energy state as evaluated from the tissue concentrations of phosphocreatine, ATP, ADP, and AMP; and (2) return of spontaneous electrocortical activity as well as of somatosensory evoked response (SER). In contrast, administration of glucose to food-deprived animals prior to ischemia caused an increase in tissue lactate concentration to about 35 μmol g−1. These animals did not recover energy balance in the tissue and neurophysiological functions did not return. In other experiments the production of lactate during 30 min of complete compression ischemia was increased from about 12 μmol g−1 (normoglycemic animals) to 20–30 μmol g−1 by preischemic hyperglycemia and. in separate animals, combined hypercapnia. The recovery of the cortical energy state upon recirculation was significantly poorer in hyperglycemic animals. It is concluded that a high degree of tissue lactic acidosis during brain ischemia impairs postischemic recovery and that different degrees of tissue lactic acidosis may explain why severe incomplete ischemia, in certain experimental models, is more deleterious than complete brain ischemia.


Stroke | 1992

Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats

Hajime Memezawa; Maj-Lis Smith; Bo K. Siesjö

The rat is now extensively used for studies on focal cerebral ischemia, and several novel pharmacological principles have been worked out in rat models of middle cerebral artery occlusion. The objective of the present study was to assess how ischemic tissue can be salvaged by reperfusion in a model of transient focal ischemia that gives infarction of both the caudoputamen and the neocortex. Methods The middle cerebral artery of anesthetized rats was occluded for 15, 30, 60, 90, 120, or 180 minutes by an intraluminal filament, and recirculation was instituted for 7 days to allow assessment of the density and localization of ischemic brain damage using histopathologic techniques. Local cerebral blood flow was measured in separate animals to verify that removal of the filament was followed by adequate recirculation. Results Following 15 minutes of middle cerebral artery occlusion seven of eight rats showed selective neuronal necrosis in the caudoputamen, while the neocortex was normal. After 30 minutes of occlusion, seven of eight animals had infarcts localized to the lateral caudoputamen, and four of eight had selective neuronal necrosis in the neocortex. Prolongation of the ischemia to 60 minutes induced cortical infarction in all eight rats. The infarct size increased progressively with increasing occlusion time, up to 120–180 minutes, when the infarcts were as extensive as those observed following 24 hours of permanent middle cerebral artery occlusion. Conclusions The results demonstrate a time window for salvage of penumbral tissues by reperfusion that is shorter than that suggested on the basis of previous data in other species. The results probably reflect a lower collateral blood flow in the rat than in other species. This should be taken into account when the effect of pharmacological agents is studied in rats.


Critical Care Medicine | 1988

Mechanisms of ischemic brain damage

Bo K. Siesjö

This article provides a brief review of recent developments regarding the pathophysiology of ischemic brain damage, and offers hypotheses explaining the pathogenesis of selective neuronal vulnerability and of tissue infarction, respectively. It is suggested that selective neuronal vulnerability, observed after brief periods of ischemia and after hypoglycemic coma, qualifies as an excitotoxic lesion, which causes postsynaptic damage to neurons innervated by excitatory amino acids by enhancing calcium influx. However, ischemic damage often involves glial and vascular cells as well, and causes infarction. It is hypothesized that this type of brain damage is related to acidosis and that enhanced acidosis is detrimental because it accelerates delocalization of protein-bound iron, with an ensuing free-radical damage to membrane lipids and proteins.


Journal of Neurochemistry | 1982

Brain Cortical Fatty Acids and Phospholipids During and Following Complete and Severe Incomplete Ischemia

Stig Rehncrona; Eva Westerberg; Björn Åkesson; Bo K. Siesjö

Abstract: To explore the possibility that peroxtdative degradation of brain tissue lipid constituents is an important mechanism of irreversible ischemic damage, we measured cortical fatty acids and phospholipids during reversible brain ischemia in the rat. Neither complete nor severe incomplete ischemia (5 and 30 min) caused any measurable breakdown of total or individual fatty acids or phospholipids. Except for a small (and reversible) decrease of inositol plus serine phosphoglycerides in the early postischemic period following 30 min of incomplete ischemia, there were no significant losses of fatty acids or phospholipids during recirculation. Since peroxidation, induced in brain cortical tissue in vitro, characteristically involves degradation of polyenoic fatty acids (arachidonic and docosahexaenoic acids) and of ethanolamine phosphoglycerides, the present in vivo results fail to support the hypothesis that peroxidation of membrane lipids is of primary importance for ischemic brain cell damage. Both complete and severe incomplete ischemia caused a similar increase in the tissue content of free fatty acids (FFA). Thus the FFA pool increased by about 10 times during a 30‐min ischemic period, to constitute 1 ‐ 2% of the total fatty acid pool. Since there was a relatively larger increase in polyenoic FFA (especially in arachidonic acid) than in saturated FFA, the release of FFA may be the result of activation of a phospholipase A2 unbalanced by reesterification. Increased levels of FFA persisted during the initial recirculation period, but a gradual normalization occurred and the ischemic changes were essentially reversed at 30 min after restoration of circulation. The pathophysiological implications of the changes in FFA are discussed with respect to mitochondrial dysfunction, formation of cellular edema and prostaglandin‐mediated deterioration of postischemic circulation.


Journal of Cerebral Blood Flow and Metabolism | 1987

Calcium accumulation and neuronal damage in the rat hippocampus following cerebral ischemia.

Jayant K. Deshpande; Bo K. Siesjö; Tadeusz Wieloch

The present study was undertaken to correlate calcium accumulation with the development of neuronal necrosis following transient ischemia. After 10 min of forebrain ischemia in the rat—a period that leads to reproducible damage of CA1 pyramidal cells—determination of calcium concentration and evaluation of morphological signs of cell body necrosis in the dorsal hippocampus were performed at various recirculation times. Tissue calcium concentration was not different from control at the end of ischemic period and did not change after 3, 6, 12, or 24 h of recirculation. However, after 48 h, calcium content increased significantly, with a further increase being seen after 72 h. At early recovery periods, only scattered necrotic neurons were observed. after 48 h, only 2 of 12 hemispheres showed more than 25 necrotic cells per section. More conspicuous neuronal death was observed after 72 h. The results thus demonstrate that net accumulation of calcium in regio superior of the hippocampus precedes marked necrosis of CA1 pyramidal cells. The results suggest that one primary event in the delayed death of these cells is membrane dysfunction with increased calcium cycling.


Acta Neuropathologica | 1984

The distribution of hypoglycemic brain damage

Roland Auer; Tadeusz Wieloch; Y. Olsson; Bo K. Siesjö

SummaryRats were exposed to insulin-induced hypoglycemia resulting in periods of cerebral isoelectricity ranging from 10 to 60 min. After recovery with glucose, they were allowed to wake up and survive for 1 week. Control rats were recovered at the stage of EEG slowing. After sub-serial sectioning, the number and distribution of dying neurons was assessed in each brain region. Acid fuchsin was found to stain moribund neurons a brilliant red.Brains from control rats showed no dying neurons. From 10 to 60 min of cerebral isoelectricity, the number of dying neurons per brain correlated positively with the number of minutes of cerebral isoelectricity up to the maximum examined period of 60 min.Neuronal necrosis was found in the major brain regions vulnerable to several different insults. However, within each region the damage was not distributed as observed in ischemia.A superficial to deep gradient in the density of neuronal necrosis was seen in the cerebral cortex. More severe damage revealed a gradient in relation to the subjacent white matter as well. The caudatoputamen was involved more heavily near the white matter, and in more severely affected animals near the angle of the lateral ventricle. The hippocampus showed dense neuronal necrosis at the crest of the dentate gyrus and a gradient of increasing selective neuronal necrosis medially in CA1. The CA3 zone, while relatively resistant, showed neuronal necrosis in relation to the lateral ventricle in animals with hydrocephalus. Sharp demarcations between normal and damaged neuropil were found in the hippocampus. The periventricular amygdaloid nuclei showed damage closest to the lateral ventricles. The cerebellum was affected first near the foramina of Luschka, with damage occurring over the hemispheres in more severely affected animals. Purkinje cells were affected first, but basket cells were damaged as well. Rare necrotic neurons were seen in brain stem nuclei. The spinal cord showed necrosis of neurons in all areas of the gray matter. Infarction was not seen in this study.The possibility is discussed that a neurotoxic substance borne in the tissue fluid and cerebrospinal fluid (CSF) contributes to the pathogenesis of neuronal necrosis in hypoglycemic brain damage.

Collaboration


Dive into the Bo K. Siesjö's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaroslava Folbergrová

Czechoslovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge