Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bo Young Choi is active.

Publication


Featured researches published by Bo Young Choi.


Journal of Neuroinflammation | 2012

Recurrent/moderate hypoglycemia induces hippocampal dendritic injury, microglial activation, and cognitive impairment in diabetic rats

Seok Joon Won; Byung Hoon Yoo; Tiina M. Kauppinen; Bo Young Choi; Jin Hee Kim; Bong Geom Jang; Min Woo Lee; Min Sohn; Jialing Liu; Raymond A. Swanson; Sang Won Suh

BackgroundRecurrent/moderate (R/M) hypoglycemia is common in type 1 diabetes. Although mild or moderate hypoglycemia is not life-threatening, if recurrent, it may cause cognitive impairment. In the present study, we sought to determine whether R/M hypoglycemia leads to neuronal death, dendritic injury, or cognitive impairment.MethodsThe experiments were conducted in normal and in diabetic rats. Rats were subjected to moderate hypoglycemia by insulin without anesthesia. Oxidative stress was evaluated by 4-Hydroxy-2-nonenal immunostaining and neuronal death was determined by Fluoro-Jade B staining 7 days after R/M hypoglycemia. To test whether oxidative injury caused by NADPH oxidase activation, an NADPH oxidase inhibitor, apocynin, was used. Cognitive function was assessed by Barnes maze and open field tests at 6 weeks after R/M hypoglycemia.ResultsThe present study found that oxidative injury was detected in the dendritic area of the hippocampus after R/M hypoglycemia. Sparse neuronal death was found in the cortex, but no neuronal death was detected in the hippocampus. Significant cognitive impairment and thinning of the CA1 dendritic region was detected 6 weeks after hypoglycemia. Oxidative injury, cognitive impairment, and hippocampal thinning after R/M hypoglycemia were more severe in diabetic rats than in non-diabetic rats. Oxidative damage in the hippocampal CA1 dendritic area and microglial activation were reduced by the NADPH oxidase inhibitor, apocynin.ConclusionThe present study suggests that oxidative injury of the hippocampal CA1 dendritic region by R/M hypoglycemia is associated with chronic cognitive impairment in diabetic patients. The present study further suggests that NADPH oxidase inhibition may prevent R/M hypoglycemia-induced hippocampal dendritic injury.


Journal of Neurotrauma | 2012

Prevention of Traumatic Brain Injury-Induced Neuron Death by Intranasal Delivery of Nicotinamide Adenine Dinucleotide

Seok Joon Won; Bo Young Choi; Byung Hoon Yoo; Min Sohn; Weihai Ying; Raymond A. Swanson; Sang Won Suh

Traumatic brain injury (TBI) is one of the most devastating injuries experienced by military personnel, as well as the general population, and can result in acute and chronic complications such as cognitive impairments. Since there are currently no effective tools for the treatment of TBI, it is of great importance to determine the mechanisms of neuronal death that characterize this insult. Several studies have indicated that TBI-induced neuronal death arises in part due to excessive activation of poly(ADP-ribose) polymerase-1 (PARP-1), which results in nicotinamide adenine dinucleotide (NAD⁺) depletion and subsequent energy failure. In this study, we investigated whether intranasal administration of NAD⁺ could reduce neuronal death after TBI. Rats were subjected to a weight-drop TBI model that induces cortical and hippocampal neuronal death. The intranasal administration of NAD⁺ (20 mg/kg) immediately after TBI protected neurons in CA1, CA3, and dentate gyrus of the hippocampus, but not in the cortex. In addition, delayed microglial activation normally seen after TBI was reduced by NAD⁺ treatment at 7 days after insult. Neuronal superoxide production and PARP-1 accumulation after TBI were not inhibited by NAD⁺ treatment, indicating that reactive oxygen species (ROS) production and PARP-1 activation are events that occur upstream of NAD⁺ depletion. This study suggests that intranasal delivery of NAD⁺ represents a novel, inexpensive, and non-toxic intervention for preventing TBI-induced neuronal death.


Neurobiology of Disease | 2013

Copper/zinc chelation by clioquinol reduces spinal cord white matter damage and behavioral deficits in a murine MOG-induced multiple sclerosis model

Bo Young Choi; Bong Geom Jang; Jin Hee Kim; Jae-Nam Seo; Guang Wu; Min Sohn; Tae Nyoung Chung; Sang Won Suh

The present study aimed to evaluate the therapeutic potential of clioquinol (CQ), a metal chelator, on multiple sclerosis pathogenesis. Experimental autoimmune encephalomyelitis was induced by immunization with myelin oligodendrocyte glycoprotein (MOG(35-55)) in female mice. Three weeks after the initial immunization, demyelination and immune cell infiltration in the spinal cord were analyzed. CQ (30mg/kg) was given by gavage once per day for the entire experimental course. CQ profoundly reduced the daily clinical score and incidence rate of EAE mice. The CQ-mediated inhibition of the clinical course of EAE was accompanied by suppression of demyelination and reduced infiltration by encephalitogenic immune cells including CD4, CD8, CD20 and F4/80 positive cells. CQ also remarkably inhibited EAE-associated BBB disruption and MMP-9 activation. Autophagy contributes to clearance of aggregated proteins in astrocytes and neurons. The present study found that EAE increased the induction of autophagy and CQ further increased this expression. Furthermore, the present study found that post-treatment with CQ also reduced the clinical score of EAE and spinal cord demyelination. These results demonstrate that CQ inhibits the clinical features and neuropathological changes associated with EAE. The present study suggests that transition metals may be involved in several steps of multiple sclerosis pathogenesis.


Brain Research | 2013

Post-treatment of an NADPH oxidase inhibitor prevents seizure-induced neuronal death

Jin Hee Kim; Bong Geom Jang; Bo Young Choi; Hyeong Seop Kim; Min Sohn; Tae Nyoung Chung; Hui Chul Choi; Hong Ki Song; Sang Won Suh

The present study sought to evaluate the neuroprotective effects of apocynin, an NADPH oxidase assembly inhibitor, on seizure-induced neuronal death. Apocynin, also known as acetovanillone, is a natural organic compound isolated from the root of Canadian hemp (Apocynum cannabium). It has been extensively studied to determine its disease-fighting capabilities and application in several brain insults, such as traumatic brain injury and stroke. Here we tested the hypothesis that post-treatment of apocynin may prevent seizure-induced neuronal death by suppression of NADPH oxidase-mediated superoxide production. Temporal lobe epilepsy (TLE) was induced by intraperitoneal injection of pilocarpine (25mg/kg) in male rats. Apocynin (30mg/kg, i.p.) was injected into the intraperitoneal space two hours after seizure onset. A second injection was performed 24h after seizure. To test whether apocynin inhibits NADPH oxidase activation-induced reactive oxygen species (ROS) production, dihydroethidium (dHEt, 5mg/kg, i.p.) was injected before onset of seizure and ROS production was detected five hours after seizure onset. Neuronal oxidative injury (4HNE), neuronal death (Fluoro Jade-B), blood brain barrier (BBB) disruption (IgG leak), neurotrophil infiltration (MPO) and microglia activation (CD11b) in the hippocampus was evaluated at three days after status epilepticus (SE). Pilocarpine-induced seizure increased p47 immunofluorescence in the plasma membrane of hippocampal neurons at 12h post-insult and apocynin treatment prevented this increase. The present study found that apocynin post-treatment decreased ROS production and lipid peroxidation after seizure and decreased the number of degenerating hippocampal neurons. Apocynin also reduced seizure-induced BBB disruption, neurotrophil infiltration and microglial activation. Taken together, the present results suggest that inhibition of NADPH oxidase by apocynin may have a high therapeutic potential to reduce seizure-induced neuronal dysfunction.


PLOS ONE | 2012

Zinc chelation reduces hippocampal neurogenesis after pilocarpine-induced seizure.

Jin Hee Kim; Bong Geom Jang; Bo Young Choi; Lyo Min Kwon; Min Sohn; Hong Ki Song; Sang Won Suh

Several studies have shown that epileptic seizures increase hippocampal neurogenesis in the adult. However, the mechanism underlying increased neurogenesis after seizures remains largely unknown. Neurogenesis occurs in the subgranular zone (SGZ) of the hippocampus in the adult brain, although an understanding of why it actively occurs in this region has remained elusive. A high level of vesicular zinc is localized in the presynaptic terminals of the SGZ. Previously, we demonstrated that a possible correlation may exist between synaptic zinc localization and high rates of neurogenesis in this area after hypoglycemia. Using a lithium-pilocarpine model, we tested our hypothesis that zinc plays a key role in modulating hippocampal neurogenesis after seizure. Then, we injected the zinc chelator, clioquinol (CQ, 30 mg/kg), into the intraperitoneal space to reduce brain zinc availability. Neuronal death was detected with Fluoro Jade-B and NeuN staining to determine whether CQ has neuroprotective effects after seizure. The total number of degenerating and live neurons was similar in vehicle and in CQ treated rats at 1 week after seizure. Neurogenesis was evaluated using BrdU, Ki67 and doublecortin (DCX) immunostaining 1 week after seizure. The number of BrdU, Ki67 and DCX positive cell was increased after seizure. However, the number of BrdU, Ki67 and DCX positive cells was significantly decreased by CQ treatment. Intracellular zinc chelator, N,N,N0,N-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), also reduced seizure-induced neurogenesis in the hippocampus. The present study shows that zinc chelation does not prevent neurodegeneration but does reduce seizure-induced progenitor cell proliferation and neurogenesis. Therefore, this study suggests that zinc has an essential role for modulating hippocampal neurogenesis after seizure.


Stem Cells Translational Medicine | 2015

Adipose-Derived Mesenchymal Stem Cells Reduce Neuronal Death After Transient Global Cerebral Ischemia Through Prevention of Blood-Brain Barrier Disruption and Endothelial Damage

Tae Nyoung Chung; Jin Hee Kim; Bo Young Choi; Sung Phil Chung; Sung Won Kwon; Sang Won Suh

Global cerebral ischemia (GCI) is the leading cause of a poor prognosis even after successful resuscitation from cardiac arrest. Therapeutic induction of hypothermia (TH) is the only proven therapy—and current standard care—for GCI after cardiac arrest; however, its application has been significantly limited owing to technical difficulties. Mesenchymal stem cells (MSCs) are known to suppress neuronal death after cerebral ischemia. The prevention of blood‐brain barrier (BBB) disruption has not been suggested as a mechanism of MSC treatment but has for TH. We evaluated the therapeutic effect of MSC administration on BBB disruption and neutrophil infiltration after GCI. To evaluate the therapeutic effects of MSC treatment, rats were subjected to 7 minutes of transient GCI and treated with MSCs immediately after reperfusion. Hippocampal neuronal death was evaluated at 7 days after ischemia using Fluoro‐Jade B (FJB). BBB disruption, endothelial damage, and neutrophil infiltration were evaluated at 7 days after ischemia by immunostaining for IgG leakage, Rat endothelial antigen‐1, and myeloperoxidase (MPO). Rats treated with MSCs showed a significantly reduced FJB+ neuron count compared with the control group. They also showed reduced IgG leakage, endothelial damage, and MPO+ cell counts. The present study demonstrated that administration of MSCs after transient GCI provides a dramatic protective effect against hippocampal neuronal death. We hypothesized that the neuroprotective effects of MSC treatment might be associated with the prevention of BBB disruption and endothelial damage and a decrease in neutrophil infiltration.


Journal of Cerebral Blood Flow and Metabolism | 2012

Prevention of acute/severe hypoglycemia-induced neuron death by lactate administration

Seok Joon Won; Bong Geom Jang; Byung Hoon Yoo; Min Sohn; Min Woo Lee; Bo Young Choi; Jin Hee Kim; Hong Ki Song; Sang Won Suh

Hypoglycemia-induced cerebral neuropathy can occur in patients with diabetes who attempt tight control of blood glucose and may lead to cognitive dysfunction. Accumulating evidence from animal models suggests that hypoglycemia-induced neuronal death is not a simple result of glucose deprivation, but is instead the end result of a multifactorial process. In particular, the excessive activation of poly (ADP-ribose) polymerase-1 (PARP-1) consumes cytosolic nicotinamide adenine dinucleotide (NAD+), resulting in energy failure. In this study, we investigate whether lactate administration in the absence of cytosolic NAD+ affords neuroprotection against hypoglycemia-induced neuronal death. Intraperitoneal injection of sodium L-lactate corrected arterial blood pH and blood lactate concentration after hypoglycemia. Lactate administered without glucose was not sufficient to promote electroencephalogram recovery from an isoelectric state during hypoglycemia. However, supplementation of glucose with lactate reduced neuronal death by ∼80% in the hippocampus. Hypoglycemia-induced superoxide production and microglia activation was also substantially reduced by administration of lactate. Taken together, these results suggest an intriguing possibility: that increasing brain lactate following hypoglycemia offsets the decrease in NAD+ due to overactivation of PARP-1 by acting as an alternative energy substrate that can effectively bypass glycolysis and be fed directly to the citric acid cycle to maintain cellular ATP levels.


Journal of Trace Elements in Medicine and Biology | 2014

Zinc chelation reduces traumatic brain injury-induced neurogenesis in the subgranular zone of the hippocampal dentate gyrus.

Bo Young Choi; Jin Hee Kim; Hyunjung Kim; Bo Eun Lee; In Yeol Kim; Min Sohn; Sang Won Suh

Numerous studies have demonstrated that traumatic brain injury (TBI) increases hippocampal neurogenesis in the rodent brain. However, the mechanisms underlying increased neurogenesis after TBI remain unknown. Continuous neurogenesis occurs in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) in the adult brain. The mechanism that maintains active neurogenesis in the hippocampal area is not known. A high level of vesicular zinc is localized in the presynaptic terminals of the SGZ (mossy fiber). The mossy fiber of dentate granular cells contains high levels of chelatable zinc in their terminal vesicles, which can be released into the extracellular space during neuronal activity. Previously, our lab presented findings indicating that a possible correlation may exist between synaptic zinc localization and high rates of neurogenesis in this area after hypoglycemia or epilepsy. Using a weight drop animal model to mimic human TBI, we tested our hypothesis that zinc plays a key role in modulating hippocampal neurogenesis after TBI. Thus, we injected a zinc chelator, clioquinol (CQ, 30mg/kg), into the intraperitoneal space to reduce brain zinc availability twice per day for 1 week. Neuronal death was evaluated with Fluoro Jade-B and NeuN staining to determine whether CQ has neuroprotective effects after TBI. The number of degenerating neurons (FJB (+)) and live neurons (NeuN (+)) was similar in vehicle and in CQ-treated rats at 1 week after TBI. Neurogenesis was evaluated using BrdU, Ki67 and doublecortin (DCX) immunostaining 1 week after TBI. The number of BrdU, Ki67 and DCX positive cell was increased after TBI. However, the number of BrdU, Ki67 and DCX positive cells was significantly decreased by CQ treatment. The present study shows that zinc chelation did not prevent neurodegeneration but did reduce TBI-induced progenitor cell proliferation and neurogenesis. Therefore, this study suggests that zinc has an essential role for modulating hippocampal neurogenesis after TBI.


PLOS ONE | 2013

Pyruvate Administration Reduces Recurrent/Moderate Hypoglycemia-Induced Cortical Neuron Death in Diabetic Rats

Bo Young Choi; Jin Hee Kim; Hyunjung Kim; Jin Hyuk Yoo; Hong Ki Song; Min Sohn; Seok Joon Won; Sang Won Suh

Recurrent/moderate (R/M) hypoglycemia is common in type 1 diabetes patients. Moderate hypoglycemia is not life-threatening, but if experienced recurrently it may present several clinical complications. Activated PARP-1 consumes cytosolic NAD, and because NAD is required for glycolysis, hypoglycemia-induced PARP-1 activation may render cells unable to use glucose even when glucose availability is restored. Pyruvate, however, can be metabolized in the absence of cytosolic NAD. We therefore hypothesized that pyruvate may be able to improve the outcome in diabetic rats subjected to insulin-induced R/M hypoglycemia by terminating hypoglycemia with glucose plus pyruvate, as compared with delivering just glucose alone. In an effort to mimic juvenile type 1 diabetes the experiments were conducted in one-month-old young rats that were rendered diabetic by streptozotocin (STZ, 50mg/kg, i.p.) injection. One week after STZ injection, rats were subjected to moderate hypoglycemia by insulin injection (10U/kg, i.p.) without anesthesia for five consecutive days. Pyruvate (500mg/kg) was given by intraperitoneal injection after each R/M hypoglycemia. Three hours after last R/M hypoglycemia, zinc accumulation was evaluated. Three days after R/M hypoglycemia, neuronal death, oxidative stress, microglial activation and GSH concentrations in the cerebral cortex were analyzed. Sparse neuronal death was observed in the cortex. Zinc accumulation, oxidative injury, microglial activation and GSH loss in the cortex after R/M hypoglycemia were all reduced by pyruvate injection. These findings suggest that when delivered alongside glucose, pyruvate may significantly improve the outcome after R/M hypoglycemia by circumventing a sustained impairment in neuronal glucose utilization resulting from PARP-1 activation.


PLOS ONE | 2013

Impairment of Autophagic Flux Promotes Glucose Reperfusion-Induced Neuro2A Cell Death after Glucose Deprivation

Bong Geom Jang; Bo Young Choi; Jin Hee Kim; Min-Ju Kim; Min Sohn; Sang Won Suh

Hypoglycemia-induced brain injury is a common and serious complication of intensive insulin therapy experienced by Type 1 diabetic patients. We previously reported that hypoglycemic neuronal death is triggered by glucose reperfusion after hypoglycemia rather than as a simple result of glucose deprivation. However, the precise mechanism of neuronal death initiated by glucose reperfusion is still unclear. Autophagy is a self-degradation process that acts through a lysosome-mediated trafficking pathway to degrade and recycle intracellular components, thereby regulating metabolism and energy production. Recent studies suggest that autophagic and lysosomal dysfunction leads to abnormal protein degradation and deposition that may contribute to neuronal death. Here, we focused on the relationship between autophagy and lysosomal dysfunction in hypoglycemia-induced neuronal death. In neuronal cells, glucose reperfusion after glucose deprivation resulted in inhibition of autophagy, which may promote cell death. This cell death was accompanied with activation of caspase3 and the lysosomal proteases cathepsin B and D, which indicated impairment of autophagic flux. Taken together, these results suggest that interplay of autophagy, caspase3 activation and lysosomal proteases serve as a basis for neuronal death after hypoglycemia. Thus, we provide the molecular mechanism of neuronal death by glucose reperfusion and suggest some clues for therapeutic strategies to prevent hypoglycemia-induced neuronal death.

Collaboration


Dive into the Bo Young Choi's collaboration.

Top Co-Authors

Avatar

Sang Won Suh

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge