Boas Pucker
Bielefeld University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Boas Pucker.
BMC Plant Biology | 2014
Ralf Stracke; Daniela Holtgräwe; Jessica Schneider; Boas Pucker; Thomas Rosleff Sörensen; Bernd Weisshaar
BackgroundThe R2R3-MYB genes comprise one of the largest transcription factor gene families in plants, playing regulatory roles in plant-specific developmental processes, metabolite accumulation and defense responses. Although genome-wide analysis of this gene family has been carried out in some species, the R2R3-MYB genes in Beta vulgaris ssp. vulgaris (sugar beet) as the first sequenced member of the order Caryophyllales, have not been analysed heretofore.ResultsWe present a comprehensive, genome-wide analysis of the MYB genes from Beta vulgaris ssp. vulgaris (sugar beet) which is the first species of the order Caryophyllales with a sequenced genome. A total of 70 R2R3-MYB genes as well as genes encoding three other classes of MYB proteins containing multiple MYB repeats were identified and characterised with respect to structure and chromosomal organisation. Also, organ specific expression patterns were determined from RNA-seq data. The R2R3-MYB genes were functionally categorised which led to the identification of a sugar beet-specific clade with an atypical amino acid composition in the R3 domain, putatively encoding betalain regulators. The functional classification was verified by experimental confirmation of the prediction that the R2R3-MYB gene Bv_iogq encodes a flavonol regulator.ConclusionsThis study provides the first step towards cloning and functional dissection of the role of MYB transcription factor genes in the nutritionally and evolutionarily interesting species B. vulgaris. In addition, it describes the flavonol regulator BvMYB12, being the first sugar beet R2R3-MYB with an experimentally proven function.
PLOS ONE | 2016
Boas Pucker; Daniela Holtgräwe; Thomas Rosleff Sörensen; Ralf Stracke; Prisca Viehöver; Bernd Weisshaar
Arabidopsis thaliana is the most important model organism for fundamental plant biology. The genome diversity of different accessions of this species has been intensively studied, for example in the 1001 genome project which led to the identification of many small nucleotide polymorphisms (SNPs) and small insertions and deletions (InDels). In addition, presence/absence variation (PAV), copy number variation (CNV) and mobile genetic elements contribute to genomic differences between A. thaliana accessions. To address larger genome rearrangements between the A. thaliana reference accession Columbia-0 (Col-0) and another accession of about average distance to Col-0, we created a de novo next generation sequencing (NGS)-based assembly from the accession Niederzenz-1 (Nd-1). The result was evaluated with respect to assembly strategy and synteny to Col-0. We provide a high quality genome sequence of the A. thaliana accession (Nd-1, LXSY01000000). The assembly displays an N50 of 0.590 Mbp and covers 99% of the Col-0 reference sequence. Scaffolds from the de novo assembly were positioned on the basis of sequence similarity to the reference. Errors in this automatic scaffold anchoring were manually corrected based on analyzing reciprocal best BLAST hits (RBHs) of genes. Comparison of the final Nd-1 assembly to the reference revealed duplications and deletions (PAV). We identified 826 insertions and 746 deletions in Nd-1. Randomly selected candidates of PAV were experimentally validated. Our Nd-1 de novo assembly allowed reliable identification of larger genic and intergenic variants, which was difficult or error-prone by short read mapping approaches alone. While overall sequence similarity as well as synteny is very high, we detected short and larger (affecting more than 100 bp) differences between Col-0 and Nd-1 based on bi-directional comparisons. The de novo assembly provided here and additional assemblies that will certainly be published in the future will allow to describe the pan-genome of A. thaliana.
BMC Research Notes | 2017
Boas Pucker; Daniela Holtgräwe; Bernd Weisshaar
ObjectiveThe Arabidopsis thaliana Niederzenz-1 genome sequence was recently published with an ab initio gene prediction. In depth analysis of the predicted gene set revealed some errors involving genes with non-canonical splice sites in their introns. Since non-canonical splice sites are difficult to predict ab initio, we checked for options to improve the annotation by transferring annotation information from the recently released Columbia-0 reference genome sequence annotation Araport11.ResultsIncorporation of hints generated from Araport11 enabled the precise prediction of non-canonical splice sites. Manual inspection of RNA-Seq read mapping and RT-PCR were applied to validate the structural annotations of non-canonical splice sites. Predictions of untranslated regions were also updated by harnessing the potential of Araport11’s information, which was generated by using high coverage RNA-Seq data. The improved gene set of the Nd-1 genome assembly (GeneSet_Nd-1_v1.1) was evaluated via comparison to the initial gene prediction (GeneSet_Nd-1_v1.0) as well as against Araport11 for the Col-0 reference genome sequence. GeneSet_Nd-1_v1.1 contains previously missed non-canonical splice sites in 1256 genes. Reciprocal best hits for 24,527 (89.4%) of all nuclear Col-0 genes against the GeneSet_Nd-1_v1.1 indicate a high gene prediction quality.
bioRxiv | 2018
Hanna Marie Schilbert; Vanessa Pellegrinelli; Sergio Rodriguez-Cuenca; Antonio Vidal-Puig; Boas Pucker
Prolidase (PEPD) catalyses the cleavage of dipeptides with high affinity for proline at the C-terminal end. This function is required in almost all living organisms and orthologues of PEPD were thus detected across a broad taxonomic range. In order to detect strongly conserved residues in PEPD, we analysed PEPD orthologous sequences identified in data sets of animals, plants, fungi, archaea, and bacteria. Due to conservation over very long evolutionary time, conserved residues are likely to be of functional relevance. Single amino acid mutations in PEPD cause an autosomal disorder called prolidase deficiency and were associated with various cancer types. We provide new insights into 15 additional residues with putative roles in prolidase deficiency and cancer. Moreover, our results confirm previous reports identifying five residues involved in the binding of metal cofactors as highly conserved and enable the classification of several non-synonymous single nucleotide polymorphisms as likely pathogenic and seven as putative polymorphisms. Moreover, more than 50 conserved residues across species, which were not previously described, were identified. Conservation degree per residue across the animal kingdom were mapped to the human PEPD 3D structure revealing the strongest conservation close to the active site accompanied with a higher functional implication and pathogenic potential, validating the importance of a characteristic active site fold for prolidase identity.
bioRxiv | 2018
Boas Pucker; Samuel F. Brockington
Most eukaryotic genes comprise exons and introns thus requiring the precise removal of introns from pre-mRNAs to enable protein biosynthesis. U2 and U12 spliceosomes catalyze this step by recognizing motifs on the transcript in order to remove the introns. A process which is dependent on precise definition of exon-intron borders by splice sites, which are consequently highly conserved across species. Only very few combinations of terminal dinucleotides are frequently observed at intron ends, dominated by the canonical GT-AG splice sites on the DNA level. Here we investigate the occurrence of diverse combinations of dinucleotides at predicted splice sites. Analyzing 121 plant genome sequences based on their annotation revealed strong splice site conservation across species, annotation errors, and true biological divergence from canonical splice sites. The frequency of non-canonical splice sites clearly correlates with their divergence from canonical ones indicating either an accumulation of probably neutral mutations, or evolution towards canonical splice sites. Strong conservation across multiple species and non-random accumulation of substitutions in splice sites indicate a functional relevance of non-canonical splice sites. The average composition of splice sites across all investigated species is 98.7% for GT-AG, 1.2% for GC-AG, 0.06% for AT-AC, and 0.09% for minor non-canonical splice sites. RNA-Seq data sets of 35 species were incorporated to validate non-canonical splice site predictions through gaps in sequencing reads alignments and to demonstrate the expression of affected genes. We conclude that bona fide non-canonical splice sites are present and appear to be functionally relevant in most plant genomes, if at low abundance.
bioRxiv | 2018
Boas Pucker; Daniela Holtgraewe; Kai Bernd Stadermann; Katharina Frey; Bruno Huettel; Richard Reinhardt; Bernd Weisshaar
Background In addition to the BAC-based reference sequence of the accession Columbia-0 from the year 2000, several short read assemblies of THE plant model organism Arabidopsis thaliana were published during the last years. Also, a SMRT-based assembly of Landsberg erecta has been generated that identified translocation and inversion polymorphisms between two genotypes of the species. Results Here we provide a chromosome-arm level assembly of the A. thaliana accession Niederzenz-1 (AthNd-1_v2c) based on SMRT sequencing data. The best assembly comprises 69 nucleome sequences and displays a contig length of up to 16 Mbp. Compared to an earlier Illumina short read-based NGS assembly (AthNd-1_v1), a 75 fold increase in contiguity was observed for AthNd-1_v2c. To assign contig locations independent from the Col-0 gold standard reference sequence, we used genetic anchoring to generate a de novo assembly. In addition, we assembled the chondrome and plastome sequences. Conclusions Detailed analyses of AthNd-1_v2c allowed reliable identification of large genomic rearrangements between A. thaliana accessions contributing to differences in the gene sets that distinguish the genotypes. One of the differences detected identified a gene that is lacking from the Col-0 gold standard sequence. This de novo assembly extends the known proportion of the A. thaliana pan-genome.
Journal of Integrative Bioinformatics | 2018
Christoph Brinkrolf; Nadja A. Henke; Lennart Ochel; Boas Pucker; Olaf Kruse; Petra Lutter
Abstract In this work we present new concepts of VANESA, a tool for modeling and simulation in systems biology. We provide a convenient way to handle mathematical expressions and take physical units into account. Simulation and result management has been improved, and syntax and consistency checks, based on physical units, reduce modeling errors. As a proof of concept, essential components of the aerobic carbon metabolism of the green microalga Chlamydomonas reinhardtii are modeled and simulated. The modeling process is based on xHPN Petri net formalism and simulation is performed with OpenModelica, a powerful environment and compiler for Modelica. VANESA, as well as OpenModelica, is open source, free-of-charge for non-commercial use, and is available at: http://agbi.techfak.uni-bielefeld.de/vanesa.
Journal of Biological Engineering | 2018
Christopher M. Whitford; Saskia Dymek; Denise Kerkhoff; Camilla März; Olga Schmidt; Maximilian Edich; Julian Droste; Boas Pucker; Christian Rückert; Jörn Kalinowski
BackgroundBiosafety is a key aspect in the international Genetically Engineered Machine (iGEM) competition, which offers student teams an amazing opportunity to pursue their own research projects in the field of Synthetic Biology. iGEM projects often involve the creation of genetically engineered bacterial strains. To minimize the risks associated with bacterial release, a variety of biosafety systems were constructed, either to prevent survival of bacteria outside the lab or to hinder horizontal or vertical gene transfer.Main bodyPhysical containment methods such as bioreactors or microencapsulation are considered the first safety level. Additionally, various systems involving auxotrophies for both natural and synthetic compounds have been utilized by iGEM teams in recent years. Combinatorial systems comprising multiple auxotrophies have been shown to reduced escape frequencies below the detection limit. Furthermore, a number of natural toxin-antitoxin systems can be deployed to kill cells under certain conditions. Additionally, parts of naturally occurring toxin-antitoxin systems can be used for the construction of ‘kill switches’ controlled by synthetic regulatory modules, allowing control of cell survival. Kill switches prevent cell survival but do not completely degrade nucleic acids. To avoid horizontal gene transfer, multiple mechanisms to cleave nucleic acids can be employed, resulting in ‘self-destruction’ of cells. Changes in light or temperature conditions are powerful regulators of gene expression and could serve as triggers for kill switches or self-destruction systems. Xenobiology-based containment uses applications of Xeno-DNA, recoded codons and non-canonical amino acids to nullify the genetic information of constructed cells for wild type organisms. A ‘minimal genome’ approach brings the opportunity to reduce the genome of a cell to only genes necessary for survival under lab conditions. Such cells are unlikely to survive in the natural environment and are thus considered safe hosts. If suitable for the desired application, a shift to cell-free systems based on Xeno-DNA may represent the ultimate biosafety system.ConclusionHere we describe different containment approaches in synthetic biology, ranging from auxotrophies to minimal genomes, which can be combined to significantly improve reliability. Since the iGEM competition greatly increases the number of people involved in synthetic biology, we will focus especially on biosafety systems developed and applied in the context of the iGEM competition.
Frontiers in Molecular Biosciences | 2018
Markus Haak; Svenja Vinke; Willy Keller; Julian Droste; Christian Rückert; Jörn Kalinowski; Boas Pucker
Croton tiglium is one of more than 1,200 different species in the large genus Croton, belonging to the family Euphorbiaceae (Kalwij, 2012; The Plant List, 2014). C. tiglium can be found in subtropical and tropical regions on both hemispheres (Salatino et al., 2007). This plant was first mentioned in the medical literature over 2,200 years ago in China. The medical relevance is probably due to a huge variety of different secondary metabolites (Pope, 1824). Traditionally utilized as a purgative to treat gastrointestinal and intestinal disorders, as an abortifacient and counterirritant, the commercially available seed oil of C. tiglium is nowadays applied in homeopathy and acupuncture (Glaser et al., 1988). The pharmacologic mechanism of the laxative properties of ethanol extracts of C. tiglium has been studied on rat intestinal epithelium (Tsai et al., 2004). C. tiglium produces various phorbol esters, including substances that were reported to be tumor-promoting (Van Duuren et al., 1963), antileukemic and antimycobacterial (Goel et al., 2007; Salatino et al., 2007), and even candidates for the treatment of HIV (El-Mekkawy et al., 2000). Beside the tumor-promoting factors, some cytotoxic phorbol esters were isolated from plant extracts and evaluated in cell culture assays (Zhang et al., 2013). In contrast to the co-carcinogenic substances, C. tiglium was shown to produce a ribonucleoside analog of guanosine with antitumor activity (Kim et al., 1994). In this work, we present a comprehensive de novo transcriptome assembly of C. tiglium based on a normalized library to cover a huge variety of transcripts. In addition, tissue-specific transcript libraries were generated to enable differential gene expression analysis between tissues. This will facilitate the identification of candidate genes involved in growth, development, and metabolism of this plant species.
Journal of Biotechnology | 2017
Rabeaa S. Alkhateeb; Christian Rückert; Oliver Rupp; Boas Pucker; Gerd Hublik; Daniel Wibberg; Karsten Niehaus; Alfred Pühler; Frank-Jörg Vorhölter