Bob Jacobs
Colorado College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bob Jacobs.
The Journal of Comparative Neurology | 1997
Bob Jacobs; Lori L. Driscoll; Matthew Schall
Dendritic neuropil is a sensitive indicator of the aging process and may exhibit regional cortical variations. The present study examined regional differences and age‐related changes in the basilar dendrites/spines of supragranular pyramidal cells in human prefrontal (area 10) and secondary occipital (area 18) cortices. Tissue was obtained from the left hemisphere of 26 neurologically normal individuals ranging in age from 14 to 106 years (Mage = 57 ± 22 years; 13 males, 13 females). In tissue prepared by a modified rapid Golgi technique, ten neurons were sampled from each cortical region (N = 520) and were evaluated according to the following parameters: total dendritic length, mean segment length, dendritic segment count, dendritic spine number, and dendritic spine density. The effects of age and Brodmann areas were analyzed with a nested multiple analysis of variance design.
Developmental Neuroscience | 2005
Katie Travis; Kevin Ford; Bob Jacobs
The present study quantitatively compared the basilar dendritic/spine systems of lamina V pyramidal neurons across four hierarchically arranged regions of neonatal human neocortex. Tissue blocks were removed from four Brodmann’s areas (BAs) in the left hemisphere of four neurologically normal neonates (mean age = 41 ± 40 days): primary (BA4 and BA3-1-2), unimodal (BA18), and supramodal cortices (BA10). Tissue was stained with a modified rapid Golgi technique. Ten cells per region (N = 160) were quantified. Despite the small sample size, significant differences in dendritic/spine extent obtained across cortical regions. Most apparent were substantial differences between BA4 and BA10: total dendritic length was 52% greater in BA4 than BA10, and dendritic spine number was 67% greater in BA4 than BA10. Neonatal patterns were compared to adult patterns, revealing that the relative regional pattern of dendritic complexity in the neonate was roughly the inverse of that established in the adult, with BA10 rather than BA4 being the most complex area in the adult. Overall, regional dendritic patterns suggest that the developmental time course of basilar dendritic systems is heterochronous and is more protracted for supramodal BA10 than for primary or unimodal regions (BA4, BA3-1-2, BA18).
Proceedings of the National Academy of Sciences of the United States of America | 2013
Serena Bianchi; Cheryl D. Stimpson; Tetyana Duka; Michael D. Larsen; William G.M. Janssen; Zachary Collins; Amy L. Bauernfeind; Steven J. Schapiro; Wallace B. Baze; Mark J. McArthur; William D. Hopkins; Derek E. Wildman; Leonard Lipovich; Christopher W. Kuzawa; Bob Jacobs; Patrick R. Hof; Chet C. Sherwood
Neocortical development in humans is characterized by an extended period of synaptic proliferation that peaks in mid-childhood, with subsequent pruning through early adulthood, as well as relatively delayed maturation of neuronal arborization in the prefrontal cortex compared with sensorimotor areas. In macaque monkeys, cortical synaptogenesis peaks during early infancy and developmental changes in synapse density and dendritic spines occur synchronously across cortical regions. Thus, relatively prolonged synapse and neuronal maturation in humans might contribute to enhancement of social learning during development and transmission of cultural practices, including language. However, because macaques, which share a last common ancestor with humans ∼25 million years ago, have served as the predominant comparative primate model in neurodevelopmental research, the paucity of data from more closely related great apes leaves unresolved when these evolutionary changes in the timing of cortical development became established in the human lineage. To address this question, we used immunohistochemistry, electron microscopy, and Golgi staining to characterize synaptic density and dendritic morphology of pyramidal neurons in primary somatosensory (area 3b), primary motor (area 4), prestriate visual (area 18), and prefrontal (area 10) cortices of developing chimpanzees (Pan troglodytes). We found that synaptogenesis occurs synchronously across cortical areas, with a peak of synapse density during the juvenile period (3–5 y). Moreover, similar to findings in humans, dendrites of prefrontal pyramidal neurons developed later than sensorimotor areas. These results suggest that evolutionary changes to neocortical development promoting greater neuronal plasticity early in postnatal life preceded the divergence of the human and chimpanzee lineages.
Nature | 2016
Thanathom Chailangkarn; Cleber A. Trujillo; Beatriz C. Freitas; Branka Hrvoj-Mihic; Roberto H. Herai; Diana X. Yu; Timothy T. Brown; Maria C. Marchetto; Cedric Bardy; Lauren Mchenry; Lisa Stefanacci; Anna Järvinen; Yvonne M. Searcy; Michelle DeWitt; Wenny Wong; Philip Lai; M. Colin Ard; Kari L. Hanson; Sarah Romero; Bob Jacobs; Anders M. Dale; Li Dai; Julie R. Korenberg; Fred H. Gage; Ursula Bellugi; Eric Halgren; Katerina Semendeferi; Alysson R. Muotri
Williams syndrome is a genetic neurodevelopmental disorder characterized by an uncommon hypersociability and a mosaic of retained and compromised linguistic and cognitive abilities. Nearly all clinically diagnosed individuals with Williams syndrome lack precisely the same set of genes, with breakpoints in chromosome band 7q11.23 (refs 1, 2, 3, 4, 5). The contribution of specific genes to the neuroanatomical and functional alterations, leading to behavioural pathologies in humans, remains largely unexplored. Here we investigate neural progenitor cells and cortical neurons derived from Williams syndrome and typically developing induced pluripotent stem cells. Neural progenitor cells in Williams syndrome have an increased doubling time and apoptosis compared with typically developing neural progenitor cells. Using an individual with atypical Williams syndrome, we narrowed this cellular phenotype to a single gene candidate, frizzled 9 (FZD9). At the neuronal stage, layer V/VI cortical neurons derived from Williams syndrome were characterized by longer total dendrites, increased numbers of spines and synapses, aberrant calcium oscillation and altered network connectivity. Morphometric alterations observed in neurons from Williams syndrome were validated after Golgi staining of post-mortem layer V/VI cortical neurons. This model of human induced pluripotent stem cells fills the current knowledge gap in the cellular biology of Williams syndrome and could lead to further insights into the molecular mechanism underlying the disorder and the human social brain.
American Journal of Human Biology | 2011
Cheryl D. Stimpson; Nicole A. Tetreault; John M. Allman; Bob Jacobs; Camilla Butti; Patrick R. Hof; Chet C. Sherwood
Objectives: Von Economo neurons (VENs) are defined by their thin, elongated cell body and long dendrites projecting from apical and basal ends. These distinctive neurons are mostly present in anterior cingulate (ACC) and fronto‐insular (FI) cortex, with particularly high densities in cetaceans, elephants, and hominoid primates (i.e., humans and apes). This distribution suggests that VENs contribute to specializations of neural circuits in species that share both large brain size and complex social cognition, possibly representing an adaptation to rapidly relay socially‐relevant information over long distances across the brain. Recent evidence indicates that unique patterns of protein expression may also characterize VENs, particularly involving molecules that are known to regulate gut and immune function.
Cerebral Cortex | 2009
Kaeley Anderson; Brian Bones; Brooks Robinson; Charles A. Hass; Hyowon Lee; Kevin Ford; Tomi-Ann Roberts; Bob Jacobs
Although the primate insular cortex has been studied extensively, a comprehensive investigation of its neuronal morphology has yet to be completed. To that end, neurons from 20 human subjects (10 males and 10 females; N = 600) were selected from the secondary gyrus brevis, precentral gyrus, and postcentral gyrus of the left insula. The secondary gyrus brevis was generally more complex in terms of dendritic/spine extent than either the precentral or postcentral insular gyri, which is consistent with the posterior-anterior gradient of dendritic complexity observed in other cortical regions. The male insula had longer, spinier dendrites than the female insula, potentially reflecting sex differences in interoception. In comparing the current insular data with regional dendritic data quantified from other Brodmanns areas (BAs), insular total dendritic length (TDL) was less than the TDL of high integration cortices (BA6beta, 10, 11, 39), but greater than the TDL of low integration cortices (BA3-1-2, 4, 22, 44). Insular dendritic spine number was significantly greater than both low and high integration regions. Overall, the insula had spinier, but shorter neurons than did high integration cortices, and thus may represent a specialized type of heteromodal cortex, one that integrates crude multisensory information crucial to interoceptive processes.
Frontiers in Neuroanatomy | 2014
Bob Jacobs; Nicholas L Johnson; Devin Wahl; Matthew Schall; Busisiwe C. Maseko; Albert H. Lewandowski; Mary Ann Raghanti; Bridget Wicinski; Camilla Butti; William D. Hopkins; Mads F. Bertelsen; Timothy Walsh; John R Roberts; Roger L. Reep; Patrick R. Hof; Chet C. Sherwood; Paul R. Manger
Although the basic morphological characteristics of neurons in the cerebellar cortex have been documented in several species, virtually nothing is known about the quantitative morphological characteristics of these neurons across different taxa. To that end, the present study investigated cerebellar neuronal morphology among eight different, large-brained mammalian species comprising a broad phylogenetic range: afrotherians (African elephant, Florida manatee), carnivores (Siberian tiger, clouded leopard), cetartiodactyls (humpback whale, giraffe) and primates (human, common chimpanzee). Specifically, several neuron types (e.g., stellate, basket, Lugaro, Golgi, and granule neurons; N = 317) of the cerebellar cortex were stained with a modified rapid Golgi technique and quantified on a computer-assisted microscopy system. There was a 64-fold variation in brain mass across species in our sample (from clouded leopard to the elephant) and a 103-fold variation in cerebellar volume. Most dendritic measures tended to increase with cerebellar volume. The cerebellar cortex in these species exhibited the trilaminate pattern common to all mammals. Morphologically, neuron types in the cerebellar cortex were generally consistent with those described in primates (Fox et al., 1967) and rodents (Palay and Chan-Palay, 1974), although there was substantial quantitative variation across species. In particular, Lugaro neurons in the elephant appeared to be disproportionately larger than those in other species. To explore potential quantitative differences in dendritic measures across species, MARSplines analyses were used to evaluate whether species could be differentiated from each other based on dendritic characteristics alone. Results of these analyses indicated that there were significant differences among all species in dendritic measures.
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2014
Camilla Butti; R. Ewan Fordyce; Mary Ann Raghanti; Xiaosi Gu; Christopher J. Bonar; Bridget Wicinski; Edmund Wong; Jessica Roman; Alanna Brake; Emily Eaves; Muhammad A. Spocter; Cheuk Y. Tang; Bob Jacobs; Chet C. Sherwood; Patrick R. Hof
The structure of the hippopotamus brain is virtually unknown because few studies have examined more than its external morphology. In view of their semiaquatic lifestyle and phylogenetic relatedness to cetaceans, the brain of hippopotamuses represents a unique opportunity for better understanding the selective pressures that have shaped the organization of the brain during the evolutionary process of adaptation to an aquatic environment. Here we examined the histology of the cerebral cortex of the pygmy hippopotamus (Hexaprotodon liberiensis) by means of Nissl, Golgi, and calretinin (CR) immunostaining, and provide a magnetic resonance imaging (MRI) structural and volumetric dataset of the anatomy of its brain. We calculated the corpus callosum area/brain mass ratio (CCA/BM), the gyrencephalic index (GI), the cerebellar quotient (CQ), and the cerebellar index (CI). Results indicate that the cortex of H. liberiensis shares one feature exclusively with cetaceans (the lack of layer IV across the entire cerebral cortex), other features exclusively with artiodactyls (e.g., the morphologiy of CR‐immunoreactive multipolar neurons in deep cortical layers, gyrencephalic index values, hippocampus and cerebellum volumetrics), and others with at least some species of cetartiodactyls (e.g., the presence of a thick layer I, the pattern of distribution of CR‐immunoreactive neurons, the presence of von Economo neurons, clustering of layer II in the occipital cortex). The present study thus provides a comprehensive dataset of the neuroanatomy of H. liberiensis that sets the ground for future comparative studies including the larger Hippopotamus amphibius. Anat Rec, 297:670–700, 2014.
Annals of Neurology | 2003
Bob Jacobs; Johanna Creswell; Jonathan P. Britt; Kevin Ford; Joseph E. Bogen; Eran Zaidel
This study quantitatively explored the dendritic/spine extent of supragranular pyramidal neurons across several cortical areas in two adult male subjects who had undergone a callosotomy several decades before death. In all cortical areas, there were numerous atypical, supragranular pyramidal neurons with elongated “tap root” basilar dendrites. These atypical cells could be associated with an underlying epileptic condition and/or could represent a compensatory mechanism in response to deafferentation after callosotomy. Ann Neurol 2003
Brain Behavior and Evolution | 2013
Busisiwe C. Maseko; Bob Jacobs; Muhammad A. Spocter; Chet C. Sherwood; Patrick R. Hof; Paul R. Manger
The current study provides a number of novel observations on the organization and structure of the cerebellar cortex of the African elephant by using a combination of basic neuroanatomical and immunohistochemical stains with Golgi and stereologic analysis. While the majority of our observations indicate that the cerebellar cortex of the African elephant is comparable to other mammalian species, several features were unique to the elephant. The three-layered organization of the cerebellar cortex, the neuronal types and some aspects of the expression of calcium-binding proteins were common to a broad range of mammalian species. The Lugaro neurons observed in the elephant were greatly enlarged in comparison to those of other large-brained mammals, suggesting a possible alteration in the processing of neural information in the elephant cerebellar cortex. Analysis of Golgi impregnations indicated that the dendritic complexity of the different interneuron types was higher in elephants than other mammals. Expression of parvalbumin in the parallel fibers and calbindin expressed in the stellate and basket cells also suggested changes in the elephant cerebellar neuronal circuitry. The stereologic analysis confirmed and extended previous observations by demonstrating that neuronal density is low in the elephant cerebellar cortex, providing for a larger volume fraction of the neuropil. With previous results indicating that the elephants have the largest relative cerebellar size amongst mammals, and one of the absolutely largest mammalian cerebella, the current observations suggest that the elephants have a greater volume of a potentially more complexly organized cerebellar cortex compared to other mammals. This quantitatively larger and more complex cerebellar cortex likely represents part of the neural machinery required to control the complex motor patterns involved in movement of the trunk and the production of infrasonic vocalizations.