Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bob T. Li is active.

Publication


Featured researches published by Bob T. Li.


Annals of Oncology | 2015

Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies

J. Naidoo; David B. Page; Bob T. Li; L. C. Connell; Katja Schindler; M. E. Lacouture; Michael A. Postow; Jedd D. Wolchok

Immune checkpoint antibodies that augment the programmed cell death protein 1 (PD-1)/PD-L1 pathway have demonstrated antitumor activity across multiple malignancies, and gained recent regulatory approval as single-agent therapy for the treatment of metastatic malignant melanoma and nonsmall-cell lung cancer. Knowledge of toxicities associated with PD-1/PD-L1 blockade, as well as effective management algorithms for these toxicities, is pivotal in order to optimize clinical efficacy and safety. In this article, we review selected published and presented clinical studies investigating single-agent anti-PD-1/PD-L1 therapy and trials of combination approaches with other standard anticancer therapies, in multiple tumor types. We summarize the key adverse events reported in these studies and their management algorithms.


Annals of Oncology | 2015

Targeting HER2 aberrations as actionable drivers in lung cancers: phase II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in patients with HER2-mutant or amplified tumors

Mark G. Kris; D.R. Camidge; Giuseppe Giaccone; T. Hida; Bob T. Li; Joseph P. O'Connell; Ian Taylor; H. Zhang; Maria E. Arcila; Zelanna Goldberg; Pasi A. Jänne

BACKGROUND HER2 mutations and amplifications have been identified as oncogenic drivers in lung cancers. Dacomitinib, an irreversible inhibitor of HER2, EGFR (HER1), and HER4 tyrosine kinases, has demonstrated activity in cell-line models with HER2 exon 20 insertions or amplifications. Here, we studied dacomitinib in patients with HER2-mutant or amplified lung cancers. PATIENTS AND METHODS As a prespecified cohort of a phase II study, we included patients with stage IIIB/IV lung cancers with HER2 mutations or amplification. We gave oral dacomitinib at 30-45 mg daily in 28-day cycles. End points included partial response rate, overall survival, and toxicity. RESULTS We enrolled 30 patients with HER2-mutant (n = 26, all in exon 20 including 25 insertions and 1 missense mutation) or HER2-amplified lung cancers (n = 4). Three of 26 patients with tumors harboring HER2 exon 20 mutations [12%; 95% confidence interval (CI) 2% to 30%] had partial responses lasting 3+, 11, and 14 months. No partial responses occurred in four patients with tumors with HER2 amplifications. The median overall survival was 9 months from the start of dacomitinib (95% CI 7-21 months) for patients with HER2 mutations and ranged from 5 to 22 months with amplifications. Treatment-related toxicities included diarrhea (90%; grade 3/4: 20%/3%), dermatitis (73%; grade 3/4: 3%/0%), and fatigue (57%; grade 3/4: 3%/0%). One patient died on study likely due to an interaction of dacomitinib with mirtazapine. CONCLUSIONS Dacomitinib produced objective responses in patients with lung cancers with specific HER2 exon 20 insertions. This observation validates HER2 exon 20 insertions as actionable targets and justifies further study of HER2-targeted agents in specific HER2-driven lung cancers. CLINICALTRIALSGOV NCT00818441.


Cancer Discovery | 2017

Prospective Comprehensive Molecular Characterization of Lung Adenocarcinomas for Efficient Patient Matching to Approved and Emerging Therapies

Emmet Jordan; Hyunjae R. Kim; Maria E. Arcila; David Barron; Debyani Chakravarty; Jianjiong Gao; Matthew T. Chang; Andy Ni; Ritika Kundra; Philip Jonsson; Gowtham Jayakumaran; Sizhi Paul Gao; Hannah Johnsen; Aphrothiti J. Hanrahan; Ahmet Zehir; Natasha Rekhtman; Michelle S. Ginsberg; Bob T. Li; Helena A. Yu; Paul K. Paik; Alexander Drilon; Matthew D. Hellmann; Dalicia Reales; Ryma Benayed; Valerie W. Rusch; Mark G. Kris; Jamie E. Chaft; José Baselga; Barry S. Taylor; Nikolaus Schultz

Tumor genetic testing is standard of care for patients with advanced lung adenocarcinoma, but the fraction of patients who derive clinical benefit remains undefined. Here, we report the experience of 860 patients with metastatic lung adenocarcinoma analyzed prospectively for mutations in >300 cancer-associated genes. Potentially actionable genetic events were stratified into one of four levels based upon published clinical or laboratory evidence that the mutation in question confers increased sensitivity to standard or investigational therapies. Overall, 37.1% (319/860) of patients received a matched therapy guided by their tumor molecular profile. Excluding alterations associated with standard-of-care therapy, 14.4% (69/478) received matched therapy, with a clinical benefit of 52%. Use of matched therapy was strongly influenced by the level of preexistent clinical evidence that the mutation identified predicts for drug response. Analysis of genes mutated significantly more often in tumors without known actionable mutations nominated STK11 and KEAP1 as possible targetable mitogenic drivers.Significance: An increasing number of therapies that target molecular alterations required for tumor maintenance and progression have demonstrated clinical activity in patients with lung adenocarcinoma. The data reported here suggest that broader, early testing for molecular alterations that have not yet been recognized as standard-of-care predictive biomarkers of drug response could accelerate the development of targeted agents for rare mutational events and could result in improved clinical outcomes. Cancer Discov; 7(6); 596-609. ©2017 AACR.See related commentary by Liu et al., p. 555This article is highlighted in the In This Issue feature, p. 539.


World Journal of Gastrointestinal Pathophysiology | 2014

Diagnosis of gastrointestinal bleeding: A practical guide for clinicians

Bong Sik Matthew Kim; Bob T. Li; Alexander Engel; Jaswinder S. Samra; Stephen Clarke; Ian D. Norton; Angela E. Li

Gastrointestinal bleeding is a common problem encountered in the emergency department and in the primary care setting. Acute or overt gastrointestinal bleeding is visible in the form of hematemesis, melena or hematochezia. Chronic or occult gastrointestinal bleeding is not apparent to the patient and usually presents as positive fecal occult blood or iron deficiency anemia. Obscure gastrointestinal bleeding is recurrent bleeding when the source remains unidentified after upper endoscopy and colonoscopic evaluation and is usually from the small intestine. Accurate clinical diagnosis is crucial and guides definitive investigations and interventions. This review summarizes the overall diagnostic approach to gastrointestinal bleeding and provides a practical guide for clinicians.


Journal of Thoracic Oncology | 2016

HER2 Amplification and HER2 Mutation Are Distinct Molecular Targets in Lung Cancers

Bob T. Li; Dara S. Ross; Dara L. Aisner; Jamie E. Chaft; Meier Hsu; Severine Kako; Mark G. Kris; Marileila Varella-Garcia; Maria E. Arcila

Introduction: Human epidermal growth factor receptor 2 gene (HER2 [also known as ERBB2]) alterations have been identified as oncogenic drivers and potential therapeutic targets in lung cancers. The molecular associations of HER2 gene amplification, mutation, and HER2 protein overexpression in lung cancers have not been distinctly defined. To explore these associations, Memorial Sloan Kettering Cancer Center and the University of Colorado combined their data on HER2 alterations in lung cancers. Methods: Tumor specimens from 175 patients with lung adenocarcinomas and no prior targeted therapy were evaluated for the presence of HER2 amplification and mutation and HER2 protein overexpression. Amplification was assessed by fluorescence in situ hybridization (FISH) and defined as an HER2‐to‐chromosome enumeration probe 17 ratio of at least 2.0. Mutation was assessed by fragment analysis, mass spectrometry genotyping, and Sanger sequencing. Overexpression was assessed by immunohistochemical (IHC) staining. The frequencies of HER2 amplification and mutation and HER2 overexpression were calculated and their overlap examined. Results: HER2 amplification was detected by FISH in 5 of 175 cases (3%). HER2 mutation was detected in 4 of 148 specimens (3%), including three identical 12–base pair insertions (p.A775_G776insYVMA) and a 9–base pair insertion, all in exon 20. None of the HER2‐mutant cases was amplified. HER2 overexpression (2+ or 3+) on IHC staining was not detected in the 25 specimens available for testing, and negative IHC staining correlated with the negative results according to FISH. Conclusions: HER2 mutations are not associated with HER2 amplification, thus suggesting a distinct entity and therapeutic target. HER2‐positive lung cancer may not be an adequate term, and patient cohorts for the study of HER2‐targeted agents should be defined by the specific HER2 alteration present.


Nature Medicine | 2017

An approach to suppress the evolution of resistance in BRAFV600E-mutant cancer

Yaohua Xue; Luciano G. Martelotto; Timour Baslan; Alberto Vides; Martha Solomon; Trang Thi Mai; Neelam Chaudhary; Greg Riely; Bob T. Li; Kerry Scott; Fabiola Cechhi; Ulrika Stierner; Kalyani Chadalavada; Elisa de Stanchina; Sarit Schwartz; Todd Hembrough; Gouri Nanjangud; Michael F. Berger; Jonas A. Nilsson; Scott W. Lowe; Jorge S. Reis-Filho; Neal Rosen; Piro Lito

The principles that govern the evolution of tumors exposed to targeted therapy are poorly understood. Here we modeled the selection and propagation of an amplification in the BRAF oncogene (BRAFamp) in patient-derived tumor xenografts (PDXs) that were treated with a direct inhibitor of the kinase ERK, either alone or in combination with other ERK signaling inhibitors. Single-cell sequencing and multiplex fluorescence in situ hybridization analyses mapped the emergence of extra-chromosomal amplification in parallel evolutionary trajectories that arose in the same tumor shortly after treatment. The evolutionary selection of BRAFamp was determined by the fitness threshold, the barrier that subclonal populations need to overcome to regain fitness in the presence of therapy. This differed for inhibitors of ERK signaling, suggesting that sequential monotherapy is ineffective and selects for a progressively higher BRAF copy number. Concurrent targeting of the RAF, MEK and ERK kinases, however, imposed a sufficiently high fitness threshold to prevent the propagation of subclones with high-level BRAFamp. When administered on an intermittent schedule, this treatment inhibited tumor growth in 11/11 PDXs of lung cancer or melanoma without apparent toxicity in mice. Thus, gene amplification can be acquired and expanded through parallel evolution, enabling tumors to adapt while maintaining their intratumoral heterogeneity. Treatments that impose the highest fitness threshold will likely prevent the evolution of resistance-causing alterations and, thus, merit testing in patients.


Journal of Clinical Medicine | 2014

Treatment and Prevention of Bone Metastases from Breast Cancer: A Comprehensive Review of Evidence for Clinical Practice

Bob T. Li; Matthew H. Wong; Nick Pavlakis

Bone is the most common site of metastasis from breast cancer. Bone metastases from breast cancer are associated with skeletal-related events (SREs) including pathological fractures, spinal cord compression, surgery and radiotherapy to bone, as well as bone pain and hypercalcemia, leading to impaired mobility and reduced quality of life. Greater understanding of the pathophysiology of bone metastases has led to the discovery and clinical utility of bone-targeted agents such as bisphosphonates and the receptor activator of nuclear factor kappa-B ligand (RANK-L) antibody, denosumab. Both are now a routine part of the treatment of breast cancer bone metastases to reduce SREs. With regards to prevention, there is no evidence that oral bisphosphonates can prevent bone metastases in advanced breast cancer without skeletal involvement. Several phase III clinical trials have evaluated bisphosphonates as adjuvant therapy in early breast cancer to prevent bone metastases. The current published data do not support the routine use of bisphosphonates in unselected patients with early breast cancer for metastasis prevention. However, significant benefit of adjuvant bisphosphonates has been consistently observed in the postmenopausal or ovarian suppression subgroup across multiple clinical trials, which raises the hypothesis that its greatest anti-tumor effect is in a low estrogen microenvironment. An individual patient data meta-analysis will be required to confirm survival benefit in this setting. This review summarizes the key evidence for current clinical practice and future directions.


Lung Cancer | 2015

HER2 insertion YVMA mutant lung cancer: Long natural history and response to afatinib

Bob T. Li; Adrian Lee; Sandra A O'Toole; Wendy A. Cooper; Bing Yu; Jamie E. Chaft; Maria E. Arcila; Mark G. Kris; Nick Pavlakis

Human epidermal growth factor 2 (HER2, ERBB2) mutations in lung cancers are oncogenic drivers that respond to HER2 targeted therapies. Little is known about the sensitivity of subtypes of HER2 mutant lung cancers to targeted agents. We present a patient with HER2 mutant lung cancer with a 12 base pair insertion YVMA (p.A775_G776insYVMA), who had a long natural history and durable partial response to afatinib. We demonstrate that afatinib has activity in patients with HER2 mutant lung cancers with exon 20 YVMA insertions, the most common variant.


Cancer Discovery | 2017

First-in-Class ERK1/2 Inhibitor Ulixertinib (BVD-523) in Patients with MAPK Mutant Advanced Solid Tumors: Results of a Phase I Dose-Escalation and Expansion Study

Ryan J. Sullivan; Jeffrey R. Infante; Filip Janku; Deborah Jean Lee Wong; Jeffrey A. Sosman; Vicki L. Keedy; Manish R. Patel; Geoffrey I. Shapiro; Anthony W. Tolcher; Andrea Wang-Gillam; Mario Sznol; Keith T. Flaherty; Elizabeth I. Buchbinder; Richard D. Carvajal; Anna M. Varghese; Mario E. Lacouture; Antoni Ribas; Sapna Pradyuman Patel; Gary A Decrescenzo; Caroline Emery; Anna L. Groover; Saurabh Saha; Mary Varterasian; Dean Welsch; David M. Hyman; Bob T. Li

Ulixertinib (BVD-523) is an ERK1/2 kinase inhibitor with potent preclinical activity in BRAF- and RAS-mutant cell lines. In this multicenter phase I trial (NCT01781429), 135 patients were enrolled to an accelerated 3 + 3 dose-escalation cohort and six distinct dose-expansion cohorts. Dose escalation included 27 patients, dosed from 10 to 900 mg twice daily and established the recommended phase II dose (RP2D) of 600 mg twice daily. Ulixertinib exposure was dose proportional to the RP2D, which provided near-complete inhibition of ERK activity in whole blood. In the 108-patient expansion cohort, 32% of patients required dose reduction. The most common treatment-related adverse events were diarrhea (48%), fatigue (42%), nausea (41%), and dermatitis acneiform (31%). Partial responses were seen in 3 of 18 (17%) patients dosed at or above maximum tolerated dose and in 11 of 81 (14%) evaluable patients in dose expansion. Responses occurred in patients with NRAS-, BRAF V600-, and non-V600 BRAF-mutant solid tumors.Significance: Here, we describe the first-in-human dose-escalation study of an ERK1/2 inhibitor for the treatment of patients with advanced solid tumors. Ulixertinib has an acceptable safety profile with favorable pharmacokinetics and has shown early evidence of clinical activity in NRAS- and BRAF V600- and non-V600-mutant solid-tumor malignancies. Cancer Discov; 8(2); 184-95. ©2017 AACR.See related commentary by Smalley and Smalley, p. 140This article is highlighted in the In This Issue feature, p. 127.


Annals of Oncology | 2016

A Prospective Study of Total Plasma Cell-Free DNA as a Predictive Biomarker for Response to Systemic Therapy in Patients with Advanced Non-Small Cell Lung Cancers

Bob T. Li; Alexander Drilon; Melissa Lynne Johnson; Meier Hsu; Camelia Sima; C. McGinn; Hirofumi Sugita; Mark G. Kris; Christopher G. Azzoli

BACKGROUND While previous studies have reported on the prognostic value of total plasma cell-free deoxyribonucleic acid (cfDNA) in lung cancers, few have prospectively evaluated its predictive value for systemic therapy response. PATIENTS AND METHODS We conducted a prospective study to evaluate the association between changes in total cfDNA and radiologic response to systemic therapy in patients with stage IIIB/IV non-small-cell lung cancers (NSCLCs). Paired blood collections for cfDNA and computed tomography (CT) assessments by RECIST v1.0 were performed at baseline and 6-12 weeks after therapy initiation. Total cfDNA levels were measured in plasma using quantitative real-time polymerase chain reaction. Associations between changes in cfDNA and radiologic response, progression-free survival (PFS), and overall survival (OS) were measured using Kruskal-Wallis and Kaplan-Meier estimates. RESULTS A total of 103 patients completed paired cfDNA and CT response assessments. Systemic therapy administered included cytotoxic chemotherapy in 57% (59/103), molecularly targeted therapy in 17% (17/103), and combination therapy in 26% (27/103). Median change in cfDNA from baseline to response assessment did not significantly differ by radiologic response categories of progression of disease, stable disease and partial response (P = 0.10). However, using radiologic response as continuous variable, there was a weak positive correlation between change in radiologic response and change in cfDNA (Spearmans correlation coefficient 0.21, P = 0.03). Baseline cfDNA levels were not associated with PFS [hazard ratio (HR) = 1.06, 95% confidence interval (CI) 0.93-1.20, P = 0.41] or OS (HR = 1.04, 95% CI 0.93-1.17, P = 0.51), neither were changes in cfDNA. CONCLUSIONS In this large prospective study, changes in total cfDNA over time did not significantly predict radiologic response from systemic therapy in patients with advanced NSCLC. Pretreatment levels of total cfDNA were not prognostic of survival. Total cfDNA level is not a highly specific predictive biomarker and future investigations in cfDNA should focus on tumor-specific genomic alterations using expanded capabilities of next-generation sequencing.

Collaboration


Dive into the Bob T. Li's collaboration.

Top Co-Authors

Avatar

Mark G. Kris

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Maria E. Arcila

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Charles M. Rudin

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Alexander Drilon

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michael Offin

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michael F. Berger

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Nick Pavlakis

Royal North Shore Hospital

View shared research outputs
Top Co-Authors

Avatar

Stephen Clarke

Royal North Shore Hospital

View shared research outputs
Top Co-Authors

Avatar

Gregory J. Riely

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

David B. Solit

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge