Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bob van de Water is active.

Publication


Featured researches published by Bob van de Water.


Cancer Research | 2005

Requirement for Focal Adhesion Kinase in the Early Phase of Mammary Adenocarcinoma Lung Metastasis Formation

Maroesja J. van Nimwegen; Saertje Verkoeijen; Liesbeth van Buren; Danny Burg; Bob van de Water

An increased expression of focal adhesion kinase (FAK) in a variety of cancers is associated with a poor disease prognosis. To study the role of FAK in breast tumor growth and metastasis formation, we used conditional doxycycline-regulated expression of a dominant-negative acting splice variant of FAK, FAK-related non-kinase (FRNK), in MTLn3 mammary adenocarcinoma cells in a syngeneic Fischer 344 rat tumor and metastasis model. In cell culture, doxycycline-mediated expression of FRNK inhibited MTLn3 cell spreading and migration in association with reduced formation of focal adhesions and phosphorylation of FAK on Tyr(397), but FRNK did not cause apoptosis. Continuous expression of FRNK decreased the primary tumor growth in the mammary fat pad by 60%, which was not due to induction of apoptosis. Lung metastasis formation was almost completely prevented when FRNK was already expressed 1 day before tumor cell injection, whereas expression of FRNK 11 days after injection did not affect lung metastasis formation. FRNK expression during the first 5 days was sufficient to block metastasis formation, excluding the possibility of FRNK-induced dormancy of tumor cells. Together, these data fit with a model wherein FAK is required for breast tumor cell invasion/migration processes that take place in the early phase of metastasis formation. Our findings suggest that FAK is a good candidate for therapeutic intervention of metastasis formation.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Annexin A1 regulates TGF-β signaling and promotes metastasis formation of basal-like breast cancer cells

Marjo de Graauw; Martine H. van Miltenburg; Marjanka K. Schmidt; Chantal Pont; Reshma Lalai; Joelle Kartopawiro; Evangelia Pardali; Sylvia E. Le Dévédec; Vincent T.H.B.M. Smit; Annemieke van der Wal; Laura J. van't Veer; Anne-Marie Cleton-Jansen; Peter ten Dijke; Bob van de Water

Annexin A1 (AnxA1) is a candidate regulator of the epithelial- to mesenchymal (EMT)-like phenotypic switch, a pivotal event in breast cancer progression. We show here that AnxA1 expression is associated with a highly invasive basal-like breast cancer subtype both in a panel of human breast cancer cell lines as in breast cancer patients and that AnxA1 is functionally related to breast cancer progression. AnxA1 knockdown in invasive basal-like breast cancer cells reduced the number of spontaneous lung metastasis, whereas additional expression of AnxA1 enhanced metastatic spread. AnxA1 promotes metastasis formation by enhancing TGFβ/Smad signaling and actin reorganization, which facilitates an EMT-like switch, thereby allowing efficient cell migration and invasion of metastatic breast cancer cells.


Breast Cancer Research | 2011

Elevated insulin-like growth factor 1 receptor signaling induces antiestrogen resistance through the MAPK/ERK and PI3K/Akt signaling routes

Yinghui Zhang; Marja Moerkens; Sreenivasa Ramaiahgari; Hans de Bont; Leo Price; John H.N. Meerman; Bob van de Water

IntroductionInsulin-like growth factor 1 (IGF-1) receptor (IGF-1R) is phosphorylated in all breast cancer subtypes. Past findings have shown that IGF-1R mediates antiestrogen resistance through cross-talk with estrogen receptor (ER) signaling and via its action upstream of the epidermal growth factor receptor and human epidermal growth factor receptor 2. Yet, the direct role of IGF-1R signaling itself in antiestrogen resistance remains obscure. In the present study, we sought to elucidate whether antiestrogen resistance is induced directly by IGF-1R signaling in response to its ligand IGF-1 stimulation.MethodsA breast cancer cell line ectopically expressing human wild-type IGF-1R, MCF7/IGF-1R, was established by retroviral transduction and colony selection. Cellular antiestrogen sensitivity was evaluated under estrogen-depleted two-dimensional (2D) and 3D culture conditions. Functional activities of the key IGF-1R signaling components in antiestrogen resistance were assessed by specific kinase inhibitor compounds and small interfering RNA.ResultsEctopic expression of IGF-1R in ER-positive MCF7 human breast cancer cells enhanced IGF-1R tyrosine kinase signaling in response to IGF-1 ligand stimulation. The elevated IGF-1R signaling rendered MCF7/IGF-1R cells highly resistant to the antiestrogens tamoxifen and fulvestrant. This antiestrogen-resistant phenotype involved mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol 3-kinase/protein kinase B pathways downstream of the IGF-1R signaling hub and was independent of ER signaling. Intriguingly, a MAPK/ERK-dependent agonistic behavior of tamoxifen at low doses was triggered in the presence of IGF-1, showing a mild promitogenic effect and increasing ER transcriptional activity.ConclusionsOur data provide evidence that the IGF-1/IGF-1R signaling axis may play a causal role in antiestrogen resistance of breast cancer cells, despite continuous suppression of ER transcriptional function by antiestrogens.


Human Molecular Genetics | 2009

Toxic tubular injury in kidneys from Pkd1-deletion mice accelerates cystogenesis accompanied by dysregulated planar cell polarity and canonical Wnt signaling pathways

Hester Happé; Wouter N. Leonhard; Annemieke van der Wal; Bob van de Water; Irma S. Lantinga-van Leeuwen; Martijn H. Breuning; Emile de Heer; Dorien J.M. Peters

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by large fluid-filled cysts and progressive deterioration of renal function necessitating renal replacement therapy. Previously, we generated a tamoxifen-inducible, kidney epithelium-specific Pkd1-deletion mouse model and showed that inactivation of the Pkd1 gene induces rapid cyst formation in developing kidneys and a slow onset of disease in adult mice. Therefore, we hypothesized that injury-induced tubular epithelial cell proliferation may accelerate cyst formation in the kidneys of adult Pkd1-deletion mice. Mice were treated with the nephrotoxicant 1,2-dichlorovinyl-cysteine (DCVC) after Pkd1-gene inactivation, which indeed accelerated cyst formation significantly. After the increased proliferation during tissue regeneration, proliferation decreased to basal levels in Pkd1-deletion mice just as in DCVC-treated controls. However, in severe cystic kidneys, 10-14 weeks after injury, proliferation increased again. This biphasic response suggests that unrestricted cell proliferation after injury is not the underlying mechanism for cyst formation. Aberrant planar cell polarity (PCP) signaling and increased canonical Wnt signaling are suggested to be involved in cyst formation. Indeed, we show here that in Pkd1 conditional deletion mice expression of the PCP component Four-jointed (Fjx1) is decreased while its expression is required during tissue regeneration. In addition, we show that altered centrosome position and the activation of canonical Wnt signaling are early effects of Pkd1-gene disruption. This suggests that additional stimuli or events are required to trigger the process of cyst formation. We propose that during tissue repair, the integrity of the newly formed Pkd1-deficient cells is modified rendering them susceptible to subsequent cyst formation.


Molecular and Cellular Biology | 2008

Annexin A2 phosphorylation mediates cell scattering and branching morphogenesis via cofilin Activation.

Marjo de Graauw; Ine B. Tijdens; Mirjam B. Smeets; Paul J. Hensbergen; André M. Deelder; Bob van de Water

ABSTRACT Dynamic remodeling of the actin cytoskeleton is required for cell spreading, motility, and migration and can be regulated by tyrosine kinase activity. Phosphotyrosine proteomic screening revealed phosphorylation of the lipid-, calcium-, and actin-binding protein annexin A2 (AnxA2) at Tyr23 as a major event preceding ts-v-Src kinase-induced cell scattering. Expression of the phospho-mimicking mutant Y23E-AnxA2 itself was sufficient to induce actin reorganization and cell scattering in MDCK cells. While Y23E-AnxA2, but not Y23A-AnxA2, enhanced Src- or hepatocyte growth factor (HGF)-induced cell scattering, short hairpin RNA-mediated knockdown of AnxA2 inhibited both v-Src- and HGF-induced cell scattering. Three-dimensional branching morphogenesis was induced in wild-type-AnxA2-expressing cells only in the presence of HGF, while Y23E-AnxA2 induced HGF-independent branching morphogenesis. Knockdown of AnxA2 prevented lumen formation during cystogenesis. The Y23E-AnxA2-induced scattering was associated with dephosphorylation/activation of the actin-severing protein cofilin. Likewise, inactive S3E-cofilin and constitutively active LIM kinase, a direct upstream kinase of cofilin, inhibited Y23E-AnxA2-induced scattering. Together, our studies indicate an essential role for AnxA2 phosphorylation in regulating cofilin-dependent actin cytoskeletal dynamics in the context of cell scattering and branching morphogenesis.


Oncogene | 1999

The roles of caspase-3 and bcl-2 in chemically-induced apoptosis but not necrosis of renal epithelial cells.

Yi Zhan; Bob van de Water; Yuping Wang; James L. Stevens

The kidney is a target for toxicants including cisplatin and S-(1,2-dichlorovinyl)-L-cysteine (DCVC), a metabolite of the environmental contaminant, trichloroethylene. Necrosis is well characterized in kidney cells, but pathways leading to apoptosis are less clear. Cysteine conjugates are useful toxicants because they induce either necrosis or apoptosis depending on chemical structure or antioxidant status. Herein, we show that in the renal epithelial cell line LLC-PK1, activation of caspase-3 (CPP32/Yama/apopain) is crucial for apoptosis, but not necrosis. Apoptosis was blocked by zVAD.fmk, and partially by a cathepsin inhibitor. Caspase-3 activity and cleavage of poly(ADP-ribose) polymerase (PARP) was detected only during apoptosis. S-(1,1,2,2-Tetrafluoroethyl)-L-cysteine (TFEC), a metabolite of tetrafluoroethylene, kills cells only by necrosis, and did not activate caspases under any conditions. Apoptosis and activation of caspase-3 by cisplatin, but not DCVC, was prevented by bcl-2. Thus, caspase-3 activation by bcl-2-dependent and -independent mechanisms is a terminal event in chemical-apoptosis of renal epithelial cells.


Cell Death & Differentiation | 1998

Cisplatin effects on F-actin and matrix proteins precede renal tubular cell detachment and apoptosis in vitro

Maricke Kruidering; Bob van de Water; Yi Zhan; Johan J Baelde; Emile de Heer; Gerard J. Mulder; Jim L Stevens; JFred Nagelkerke

In primary cultures of porcine proximal tubular kidney cells and LLC-PK1 cells cisplatin (5–50 μM) caused apoptosis and cell detachment; in both systems cell detachment occurred, preceded by a loss of cytoskeletal F-actin stress fibers within 4–6 h, and a reduction of mRNA encoding for fibronectin, collagen a2 type (IV) and laminin B2 within 17–41 h. Prevention of F-actin damage by phalloidin prevented nuclear fragmentation, suggesting a relation between F-actin damage and apoptosis. Overexpression of Bcl-2 also prevented apoptosis, but did not prevent damage to the F-actin skeleton or the reduction of mRNA expression of the matrix proteins. These results suggest that Bcl-2 overexpression interferes with apoptotic signals downstream of F-actin. The relevance of these results for cell detachment in kidney toxicity is discussed.


Hepatology | 2011

Diclofenac inhibits tumor necrosis factor-α-induced nuclear factor-κB activation causing synergistic hepatocyte apoptosis.

Lisa Fredriksson; Bram Herpers; Giulia Benedetti; Quraisha Matadin; Jordi Carreras Puigvert; Hans de Bont; Sanja Dragovic; Nico P. E. Vermeulen; Jan N. M. Commandeur; Erik H. J. Danen; Marjo de Graauw; Bob van de Water

Drug‐induced liver injury (DILI) is an important clinical problem. It involves crosstalk between drug toxicity and the immune system, but the exact mechanism at the cellular hepatocyte level is not well understood. Here we studied the mechanism of crosstalk in hepatocyte apoptosis caused by diclofenac and the proinflammatory cytokine tumor necrosis factor α (TNF‐α). HepG2 cells were treated with diclofenac followed by TNF‐α challenge and subsequent evaluation of necrosis and apoptosis. Diclofenac caused a mild apoptosis of HepG2 cells, which was strongly potentiated by TNF‐α. A focused apoptosis machinery short interference RNA (siRNA) library screen identified that this TNF‐α‐mediated enhancement involved activation of caspase‐3 through a caspase‐8/Bid/APAF1 pathway. Diclofenac itself induced sustained activation of c‐Jun N‐terminal kinase (JNK) and inhibition of JNK decreased both diclofenac and diclofenac/TNF‐α‐induced apoptosis. Live cell imaging of GFPp65/RelA showed that diclofenac dampened the TNF‐α‐mediated nuclear factor kappaB (NF‐κB) translocation oscillation in association with reduced NF‐κB transcriptional activity. This was associated with inhibition by diclofenac of the TNF‐α‐induced phosphorylation of the inhibitor of NF‐κB alpha (IκBα). Finally, inhibition of IκB kinase β (IKKβ) with BMS‐345541 as well as stable lentiviral short hairpin RNA (shRNA)‐based knockdown of p65/RelA sensitized hepatocytes towards diclofenac/TNF‐α‐induced cytotoxicity. Conclusion: Together, our data suggest a model whereby diclofenac‐mediated stress signaling suppresses TNF‐α‐induced survival signaling routes and sensitizes cells to apoptosis. (HEPATOLOGY 2011;)


Archives of Toxicology | 2013

Exploring the zebrafish embryo as an alternative model for the evaluation of liver toxicity by histopathology and expression profiling

Marja Driessen; Anne S. Kienhuis; Jeroen L. A. Pennings; Tessa E. Pronk; Evert-Jan van de Brandhof; Marianne Roodbergen; Herman P. Spaink; Bob van de Water; Leo T.M. van der Ven

The whole zebrafish embryo model (ZFE) has proven its applicability in developmental toxicity testing. Since functional hepatocytes are already present from 36 h post fertilization onwards, whole ZFE have been proposed as an attractive alternative to mammalian in vivo models in hepatotoxicity testing. The goal of the present study is to further underpin the applicability of whole ZFE for hepatotoxicity testing by combining histopathology and next-generation sequencing-based gene expression profiling. To this aim, whole ZFE and adult zebrafish were exposed to a set of hepatotoxic reference compounds. Histopathology revealed compound and life-stage-specific effects indicative of toxic injury in livers of whole ZFE and adult zebrafish. Next-generation sequencing (NGS) was used to compare transcript profiles in pooled individual RNA samples of whole ZFE and livers of adult zebrafish. This revealed that hepatotoxicity-associated expression can be detected beyond the overall transcription noise in the whole embryo. In situ hybridization verified liver specificity of selected highly expressed markers in whole ZFE. Finally, cyclosporine A (CsA) was used as an illustrative case to support applicability of ZFE in hepatotoxicity testing by comparing CsA-induced gene expression between ZFE, in vivo mouse liver and HepaRG cells on the levels of single genes, pathways and transcription factors. While there was no clear overlap on single gene level between the whole ZFE and in vivo mouse liver, strong similarities were observed between whole ZFE and in vivo mouse liver in regulated pathways related to hepatotoxicity, as well as in relevant overrepresented transcription factors. In conclusion, both the use of NGS of pooled RNA extracts analysis combined with histopathology and traditional microarray in single case showed the potential to detect liver-related genes and processes within the transcriptome of a whole zebrafish embryo. This supports the applicability of the whole ZFE model for compound-induced hepatotoxicity screening.


Clinical Cancer Research | 2015

Vaccine-Induced Tumor Necrosis Factor–Producing T Cells Synergize with Cisplatin to Promote Tumor Cell Death

Tetje C. van der Sluis; Suzanne van Duikeren; Suzanna Huppelschoten; Ekaterina S. Jordanova; Elham Beyranvand Nejad; Arjen Sloots; Louis Boon; Vincent T.H.B.M. Smit; Marij J. P. Welters; Ferry Ossendorp; Bob van de Water; Ramon Arens; Sjoerd H. van der Burg; Cornelis J. M. Melief

Purpose: Cancer immunotherapy, such as vaccination, is an increasingly successful treatment modality, but its interaction with chemotherapy remains largely undefined. Therefore, we explored the mechanism of synergy between vaccination with synthetic long peptides (SLP) of human papillomavirus type 16 (HPV16) and cisplatin in a preclinical tumor model for HPV16. Experimental Design: SLP vaccination in this preclinical tumor model allowed the elucidation of novel mechanisms of synergy between chemo- and immunotherapy. By analyzing the tumor immune infiltrate, we focused on the local intratumoral effects of chemotherapy, vaccination, or the combination. Results: Of several chemotherapeutic agents, cisplatin synergized best with SLP vaccination in tumor eradication, without requirement for the maximum-tolerated dose (MTD). Upon SLP vaccination, tumors were highly infiltrated with HPV-specific, tumor necrosis factor-α (TNFα)- and interferon-γ (IFNγ)–producing T cells. Upon combined treatment, tumor cell proliferation was significantly decreased compared with single treated and untreated tumors. Furthermore, we showed that TNFα strongly enhanced cisplatin-induced apoptotic tumor cell death in a JNK-dependent manner. This is consistent with upregulation of proapoptotic molecules and with enhanced cell death in vivo upon combined SLP vaccination and cisplatin treatment. In vivo neutralization of TNFα significantly reduced the antitumor responses induced by the combined treatment. Conclusion: Taken together, our data show that peptide vaccination with cisplatin treatment leads to decreased tumor cell proliferation and TNFα-induced enhanced cisplatin-mediated killing of tumor cells, together resulting in superior tumor eradication. Clin Cancer Res; 21(4); 781–94. ©2014 AACR.

Collaboration


Dive into the Bob van de Water's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harry Vrieling

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge