Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bobak Nazer is active.

Publication


Featured researches published by Bobak Nazer.


IEEE Transactions on Information Theory | 2011

Compute-and-Forward: Harnessing Interference Through Structured Codes

Bobak Nazer; Michael Gastpar

Interference is usually viewed as an obstacle to communication in wireless networks. This paper proposes a new strategy, compute-and-forward, that exploits interference to obtain significantly higher rates between users in a network. The key idea is that relays should decode linear functions of transmitted messages according to their observed channel coefficients rather than ignoring the interference as noise. After decoding these linear equations, the relays simply send them towards the destinations, which given enough equations, can recover their desired messages. The underlying codes are based on nested lattices whose algebraic structure ensures that integer combinations of codewords can be decoded reliably. Encoders map messages from a finite field to a lattice and decoders recover equations of lattice points which are then mapped back to equations over the finite field. This scheme is applicable even if the transmitters lack channel state information.


international symposium on information theory | 2007

Computation Over Multiple-Access Channels

Bobak Nazer; Michael Gastpar

The problem of reliably reconstructing a function of sources over a multiple-access channel (MAC) is considered. It is shown that there is no source-channel separation theorem even when the individual sources are independent. Joint source-channel strategies are developed that are optimal when the structure of the channel probability transition matrix and the function are appropriately matched. Even when the channel and function are mismatched, these computation codes often outperform separation-based strategies. Achievable distortions are given for the distributed refinement of the sum of Gaussian sources over a Gaussian multiple-access channel with a joint source-channel lattice code. Finally, computation codes are used to determine the multicast capacity of finite-field multiple-access networks, thus linking them to network coding.


international symposium on information theory | 2008

Compute-and-forward: Harnessing interference with structured codes

Bobak Nazer; Michael Gastpar

For a centralized encoder and decoder, a channel matrix is simply a set of linear equations that can be transformed into parallel channels. We develop a similar approach to multi-user networks: we view interference as creating linear equations of codewords and that a receiverpsilas goal is to collect a full rank set of such equations. Our new relaying technique, compute-and-forward, uses structured codes to reliably compute functions over channels. This allows the relays to efficiently recover a linear functions of codewords without recovering the individual codewords. Thus, our scheme can work with the structure of the interference while removing the effects of the noise at the relay. We apply our scheme to a Gaussian relay network with interference and achieve better rates than either compress-and-forward or decode-and-forward for certain regimes.


arXiv: Information Theory | 2011

Reliable Physical Layer Network Coding

Bobak Nazer; Michael Gastpar

When two or more users in a wireless network transmit simultaneously, their electromagnetic signals are linearly superimposed on the channel. As a result, a receiver that is interested in one of these signals sees the others as unwanted interference. This property of the wireless medium is typically viewed as a hindrance to reliable communication over a network. However, using a recently developed coding strategy, interference can in fact be harnessed for network coding. In a wired network, (linear) network coding refers to each intermediate node taking its received packets, computing a linear combination over a finite field, and forwarding the outcome towards the destinations. Then, given an appropriate set of linear combinations, a destination can solve for its desired packets. For certain topologies, this strategy can attain significantly higher throughputs over routing-based strategies. Reliable physical layer network coding takes this idea one step further: using judiciously chosen linear error-correcting codes, intermediate nodes in a wireless network can directly recover linear combinations of the packets from the observed noisy superpositions of transmitted signals. Starting with some simple examples, this paper explores the core ideas behind this new technique and the possibilities it offers for communication over interference-limited wireless networks.


international symposium on information theory | 2009

Ergodic interference alignment

Bobak Nazer; Michael Gastpar; Syed Ali Jafar; Sriram Vishwanath

This paper develops a new communication strategy, ergodic interference alignment, for the K-user interference channel with time-varying fading. At any particular time, each receiver will see a superposition of the transmitted signals plus noise. The standard approach to such a scenario results in each transmitter-receiver pair achieving a rate proportional to 1/K its interference-free ergodic capacity. However, given two well-chosen time indices, the channel coefficients from interfering users can be made to exactly cancel. By adding up these two observations, each receiver can obtain its desired signal without any interference. If the channel gains have independent, uniform phases, this technique allows each user to achieve at least 1/2 its interference-free ergodic capacity at any signal-to-noise ratio. Prior interference alignment techniques were only able to attain this performance as the signal-to-noise ratio tended to infinity. Extensions are given for the case where each receiver wants a message from more than one transmitter as well as the “X channel” case (with two receivers) where each transmitter has an independent message for each receiver. Finally, it is shown how to generalize this strategy beyond Gaussian channel models. For a class of finite field interference channels, this approach yields the ergodic capacity region.


IEEE Transactions on Information Theory | 2012

Ergodic Interference Alignment

Bobak Nazer; Michael Gastpar; Syed Ali Jafar; Sriram Vishwanath

This paper develops a new communication strategy, ergodic interference alignment, for the K-user interference channel with time-varying fading. At any particular time, each receiver will see a superposition of the transmitted signals plus noise. The standard approach to such a scenario results in each transmitter-receiver pair achieving a rate proportional to 1/K its interference-free ergodic capacity. However, given two well-chosen time indices, the channel coefficients from interfering users can be made to exactly cancel. By adding up these two observations, each receiver can obtain its desired signal without any interference. If the channel gains have independent, uniform phases, this technique allows each user to achieve at least 1/2 its interference-free ergodic capacity at any signal-to-noise ratio. Prior interference alignment techniques were only able to attain this performance as the signal-to-noise ratio tended to infinity. Extensions are given for the case where each receiver wants a message from more than one transmitter as well as the “X channel” case (with two receivers) where each transmitter has an independent message for each receiver. Finally, it is shown how to generalize this strategy beyond Gaussian channel models. For a class of finite field interference channels, this approach yields the ergodic capacity region.


IEEE Transactions on Information Theory | 2014

Integer-Forcing Linear Receivers

Jiening Zhan; Bobak Nazer; Uri Erez; Michael Gastpar

Linear receivers are often used to reduce the implementation complexity of multiple-antenna systems. In a traditional linear receiver architecture, the receive antennas are used to separate out the codewords sent by each transmit antenna, which can then be decoded individually. Although easy to implement, this approach can be highly suboptimal when the channel matrix is near singular. This paper develops a new linear receiver architecture that uses the receive antennas to create an effective channel matrix with integer-valued entries. Rather than attempting to recover transmitted codewords directly, the decoder recovers integer combinations of the codewords according to the entries of the effective channel matrix. The codewords are all generated using the same linear code, which guarantees that these integer combinations are themselves codewords. Provided that the effective channel is full rank, these integer combinations can then be digitally solved for the original codewords. This paper focuses on the special case where there is no coding across transmit antennas and no channel state information at the transmitter(s), which corresponds either to a multiuser uplink scenario or to single-user V-BLAST encoding. In this setting, the proposed integer-forcing linear receiver significantly outperforms conventional linear architectures such as the zero forcing and linear minimum mean-squared error receiver. In the high signal-to-noise ratio regime, the proposed receiver attains the optimal diversity-multiplexing tradeoff for the standard multiple-input multiple-output (MIMO) channel with no coding across transmit antennas. It is further shown that in an extended MIMO model with interference, the integer-forcing linear receiver achieves the optimal generalized degrees of freedom.


IEEE Transactions on Information Theory | 2014

The Approximate Sum Capacity of the Symmetric Gaussian

Or Ordentlich; Uri Erez; Bobak Nazer

Interference alignment has emerged as a powerful tool in the analysis of multiuser networks. Despite considerable recent progress, the capacity region of the Gaussian


European Transactions on Telecommunications | 2008

K

Bobak Nazer; Michael Gastpar

K


international symposium on information theory | 2006

-User Interference Channel

Bobak Nazer; Michael Gastpar

-user interference channel is still unknown in general, in part due to the challenges associated with alignment on the signal scale using lattice codes. This paper develops a new framework for lattice interference alignment, based on the compute-and-forward approach. Within this framework, each receiver decodes by first recovering two or more linear combinations of the transmitted codewords with integer-valued coefficients and then solving these linear combinations for its desired codeword. For the special case of symmetric channel gains, this framework is used to derive the approximate sum capacity of the Gaussian interference channel, up to an explicitly defined outage set of the channel gains. The key contributions are the capacity lower bounds for the weak through strong interference regimes, where each receiver should jointly decode its own codeword along with part of the interfering codewords. As part of the analysis, it is shown that decoding

Collaboration


Dive into the Bobak Nazer's collaboration.

Top Co-Authors

Avatar

Michael Gastpar

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiening Zhan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen Feng

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Viveck R. Cadambe

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shlomo Shamai

Technion – Israel Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge