Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bobbie R. Erickson is active.

Publication


Featured researches published by Bobbie R. Erickson.


Emerging Infectious Diseases | 2004

Crimean-Congo hemorrhagic fever in Turkey.

S. Sami Karti; Zekaver Odabasi; Volkan Korten; Mustafa Yilmaz; Mehmet Sonmez; Rahmet Caylan; Elif Akdogan; Necmi Eren; Iftihar Koksal; Ercument Ovali; Bobbie R. Erickson; Martin J. Vincent; Stuart T. Nichol; James A. Comer; Pierre E. Rollin; Thomas G. Ksiazek

Nineteen cases of suspected Crimean-Congo hemorrhagic fever reported from Turkey.


Journal of Virology | 2006

Marburgvirus Genomics and Association with a Large Hemorrhagic Fever Outbreak in Angola

Jonathan S. Towner; Marina L. Khristova; Tara K. Sealy; Martin J. Vincent; Bobbie R. Erickson; Darcy A. Bawiec; Amy L. Hartman; James A. Comer; Sherif R. Zaki; Ute Ströher; Filomena Gomes da Silva; Fernando del Castillo; Pierre E. Rollin; Thomas G. Ksiazek; Stuart T. Nichol

ABSTRACT In March 2005, the Centers for Disease Control and Prevention (CDC) investigated a large hemorrhagic fever (HF) outbreak in Uige Province in northern Angola, West Africa. In total, 15 initial specimens were sent to CDC, Atlanta, Ga., for testing for viruses associated with viral HFs known to be present in West Africa, including ebolavirus. Marburgvirus was also included despite the fact that the origins of all earlier outbreaks were linked directly to East Africa. Surprisingly, marburgvirus was confirmed (12 of 15 specimens) as the cause of the outbreak. The outbreak likely began in October 2004 and ended in July 2005, and it included 252 cases and 227 (90%) fatalities (report from the Ministry of Health, Republic of Angola, 2005), making it the largest Marburg HF outbreak on record. A real-time quantitative reverse transcription-PCR assay utilized and adapted during the outbreak proved to be highly sensitive and sufficiently robust for field use. Partial marburgvirus RNA sequence analysis revealed up to 21% nucleotide divergence among the previously characterized East African strains, with the most distinct being Ravn from Kenya (1987). The Angolan strain was less different (∼7%) from the main group of East African marburgviruses than one might expect given the large geographic separation. To more precisely analyze the virus genetic differences between outbreaks and among viruses within the Angola outbreak itself, a total of 16 complete virus genomes were determined, including those of the virus isolates Ravn (Kenya, 1987) and 05DRC, 07DRC, and 09DRC (Democratic Republic of Congo, 1998) and the reference Angolan virus isolate (Ang1379v). In addition, complete genome sequences were obtained from RNAs extracted from 10 clinical specimens reflecting various stages of the disease and locations within the Angolan outbreak. While the marburgviruses exhibit high overall genetic diversity (up to 22%), only 6.8% nucleotide difference was found between the West African Angolan viruses and the majority of East African viruses, suggesting that the virus reservoir species in these regions are not substantially distinct. Remarkably few nucleotide differences were found among the Angolan clinical specimens (0 to 0.07%), consistent with an outbreak scenario in which a single (or rare) introduction of virus from the reservoir species into the human population was followed by person-to-person transmission with little accumulation of mutations. This is in contrast to the 1998 to 2000 marburgvirus outbreak, where evidence of several virus genetic lineages (with up to 21% divergence) and multiple virus introductions into the human population was found.


PLOS Pathogens | 2008

Chapare virus, a newly discovered arenavirus isolated from a fatal hemorrhagic fever case in Bolivia.

Simon Delgado; Bobbie R. Erickson; Roberto Agudo; Patrick J. Blair; Efrain Vallejo; César G. Albariño; Jorge Vargas; James A. Comer; Pierre E. Rollin; Thomas G. Ksiazek; James G. Olson; Stuart T. Nichol

A small focus of hemorrhagic fever (HF) cases occurred near Cochabamba, Bolivia, in December 2003 and January 2004. Specimens were available from only one fatal case, which had a clinical course that included fever, headache, arthralgia, myalgia, and vomiting with subsequent deterioration and multiple hemorrhagic signs. A non-cytopathic virus was isolated from two of the patient serum samples, and identified as an arenavirus by IFA staining with a rabbit polyvalent antiserum raised against South American arenaviruses known to be associated with HF (Guanarito, Machupo, and Sabiá). RT-PCR analysis and subsequent analysis of the complete virus S and L RNA segment sequences identified the virus as a member of the New World Clade B arenaviruses, which includes all the pathogenic South American arenaviruses. The virus was shown to be most closely related to Sabiá virus, but with 26% and 30% nucleotide difference in the S and L segments, and 26%, 28%, 15% and 22% amino acid differences for the L, Z, N, and GP proteins, respectively, indicating the virus represents a newly discovered arenavirus, for which we propose the name Chapare virus. In conclusion, two different arenaviruses, Machupo and Chapare, can be associated with severe HF cases in Bolivia.


The New England Journal of Medicine | 2017

Ebola RNA Persistence in Semen of Ebola Virus Disease Survivors — Final Report

Gibrilla F. Deen; Barbara Knust; Nathalie Broutet; Foday Sesay; Pierre Formenty; Christine Ross; Anna Thorson; Thomas Massaquoi; Jaclyn E. Marrinan; Elizabeth Ervin; Amara Jambai; Suzanna L. R. McDonald; Kyle T. Bernstein; Alie Wurie; Marion S. Dumbuya; Neetu Abad; Baimba Idriss; Teodora Wi; Sarah D. Bennett; Tina Davies; Faiqa K. Ebrahim; Elissa Meites; Dhamari Naidoo; Samuel Smith; Anshu Banerjee; Bobbie R. Erickson; Aaron C. Brault; Kara N. Durski; Jorn Winter; Tara K. Sealy

BACKGROUND Ebola virus has been detected in the semen of men after their recovery from Ebola virus disease (EVD). We report the presence of Ebola virus RNA in semen in a cohort of survivors of EVD in Sierra Leone. METHODS We enrolled a convenience sample of 220 adult male survivors of EVD in Sierra Leone, at various times after discharge from an Ebola treatment unit (ETU), in two phases (100 participants were in phase 1, and 120 in phase 2). Semen specimens obtained at baseline were tested by means of a quantitative reverse‐transcriptase–polymerase‐chain‐reaction (RT‐PCR) assay with the use of the target sequences of NP and VP40 (in phase 1) or NP and GP (in phase 2). This study did not evaluate directly the risk of sexual transmission of EVD. RESULTS Of 210 participants who provided an initial semen specimen for analysis, 57 (27%) had positive results on quantitative RT‐PCR. Ebola virus RNA was detected in the semen of all 7 men with a specimen obtained within 3 months after ETU discharge, in 26 of 42 (62%) with a specimen obtained at 4 to 6 months, in 15 of 60 (25%) with a specimen obtained at 7 to 9 months, in 4 of 26 (15%) with a specimen obtained at 10 to 12 months, in 4 of 38 (11%) with a specimen obtained at 13 to 15 months, in 1 of 25 (4%) with a specimen obtained at 16 to 18 months, and in no men with a specimen obtained at 19 months or later. Among the 46 participants with a positive result in phase 1, the median baseline cycle‐threshold values (higher values indicate lower RNA values) for the NP and VP40 targets were lower within 3 months after ETU discharge (32.4 and 31.3, respectively; in 7 men) than at 4 to 6 months (34.3 and 33.1; in 25), at 7 to 9 months (37.4 and 36.6; in 13), and at 10 to 12 months (37.7 and 36.9; in 1). In phase 2, a total of 11 participants had positive results for NP and GP targets (samples obtained at 4.1 to 15.7 months after ETU discharge); cycle‐threshold values ranged from 32.7 to 38.0 for NP and from 31.1 to 37.7 for GP. CONCLUSIONS These data showed the long‐term presence of Ebola virus RNA in semen and declining persistence with increasing time after ETU discharge. (Funded by the World Health Organization and others.)


PLOS Pathogens | 2012

Seasonal Pulses of Marburg Virus Circulation in Juvenile Rousettus aegyptiacus Bats Coincide with Periods of Increased Risk of Human Infection

Brian R. Amman; Serena A. Carroll; Zachary Reed; Tara K. Sealy; Stephen Balinandi; Robert Swanepoel; Alan Kemp; Bobbie R. Erickson; James A. Comer; Shelley Campbell; Deborah Cannon; Marina L. Khristova; Patrick Atimnedi; Christopher D. Paddock; Rebekah J. Kent Crockett; Timothy D. Flietstra; Kelly L. Warfield; Robert Unfer; Edward Katongole-Mbidde; Robert Downing; Jordan W. Tappero; Sherif R. Zaki; Pierre E. Rollin; Thomas G. Ksiazek; Stuart T. Nichol; Jonathan S. Towner

Marburg virus (family Filoviridae) causes sporadic outbreaks of severe hemorrhagic disease in sub-Saharan Africa. Bats have been implicated as likely natural reservoir hosts based most recently on an investigation of cases among miners infected in 2007 at the Kitaka mine, Uganda, which contained a large population of Marburg virus-infected Rousettus aegyptiacus fruit bats. Described here is an ecologic investigation of Python Cave, Uganda, where an American and a Dutch tourist acquired Marburg virus infection in December 2007 and July 2008. More than 40,000 R. aegyptiacus were found in the cave and were the sole bat species present. Between August 2008 and November 2009, 1,622 bats were captured and tested for Marburg virus. Q-RT-PCR analysis of bat liver/spleen tissues indicated ∼2.5% of the bats were actively infected, seven of which yielded Marburg virus isolates. Moreover, Q-RT-PCR-positive lung, kidney, colon and reproductive tissues were found, consistent with potential for oral, urine, fecal or sexual transmission. The combined data for R. aegyptiacus tested from Python Cave and Kitaka mine indicate low level horizontal transmission throughout the year. However, Q-RT-PCR data show distinct pulses of virus infection in older juvenile bats (∼six months of age) that temporarily coincide with the peak twice-yearly birthing seasons. Retrospective analysis of historical human infections suspected to have been the result of discrete spillover events directly from nature found 83% (54/65) events occurred during these seasonal pulses in virus circulation, perhaps demonstrating periods of increased risk of human infection. The discovery of two tags at Python Cave from bats marked at Kitaka mine, together with the close genetic linkages evident between viruses detected in geographically distant locations, are consistent with R. aegyptiacus bats existing as a large meta-population with associated virus circulation over broad geographic ranges. These findings provide a basis for developing Marburg hemorrhagic fever risk reduction strategies.


Journal of Virology | 2008

Rift Valley Fever Virus Lacking the NSs and NSm Genes Is Highly Attenuated, Confers Protective Immunity from Virulent Virus Challenge, and Allows for Differential Identification of Infected and Vaccinated Animals

Brian H. Bird; César G. Albariño; Amy L. Hartman; Bobbie R. Erickson; Thomas G. Ksiazek; Stuart T. Nichol

ABSTRACT Rift Valley fever (RVF) virus is a mosquito-borne human and veterinary pathogen associated with large outbreaks of severe disease throughout Africa and more recently the Arabian peninsula. Infection of livestock can result in sweeping “abortion storms” and high mortality among young animals. Human infection results in self-limiting febrile disease that in ∼1 to 2% of patients progresses to more serious complications including hepatitis, encephalitis, and retinitis or a hemorrhagic syndrome with high fatality. The virus S segment-encoded NSs and the M segment-encoded NSm proteins are important virulence factors. The development of safe, effective vaccines and tools to screen and evaluate antiviral compounds is critical for future control strategies. Here, we report the successful reverse genetics generation of multiple recombinant enhanced green fluorescent protein-tagged RVF viruses containing either the full-length, complete virus genome or precise deletions of the NSs gene alone or the NSs/NSm genes in combination, thus creating attenuating deletions on multiple virus genome segments. These viruses were highly attenuated, with no detectable viremia or clinical illness observed with high challenge dosages (1.0 × 104 PFU) in the rat lethal disease model. A single-dose immunization regimen induced robust anti-RVF virus immunoglobulin G antibodies (titer, ∼1:6,400) by day 26 postvaccination. All vaccinated animals that were subsequently challenged with a high dose of virulent RVF virus survived infection and could be serologically differentiated from naïve, experimentally infected animals by the lack of NSs antibodies. These rationally designed marker RVF vaccine viruses will be useful tools for in vitro screening of therapeutic compounds and will provide a basis for further development of RVF virus marker vaccines for use in endemic regions or following the natural or intentional introduction of the virus into previously unaffected areas.


The Journal of Infectious Diseases | 2014

Ebola Hemorrhagic Fever: Novel Biomarker Correlates of Clinical Outcome

Anita K. McElroy; Bobbie R. Erickson; Timothy D. Flietstra; Pierre E. Rollin; Stuart T. Nichol; Jonathan S. Towner; Christina F. Spiropoulou

BACKGROUND Ebola hemorrhagic fever (EHF) outbreaks occur sporadically in Africa and result in high rates of death. The 2000-2001 outbreak of Sudan virus-associated EHF in the Gulu district of Uganda led to 425 cases, of which 216 were laboratory confirmed, making it the largest EHF outbreak on record. Serum specimens from this outbreak had been preserved in liquid nitrogen from the time of collection and were available for analysis. METHODS Available samples were tested using a series of multiplex assays to measure the concentrations of 55 biomarkers. The data were analyzed to identify statistically significant associations between the tested biomarkers and hemorrhagic manifestations, viremia, and/or death. RESULTS Death, hemorrhage, and viremia were independently associated with elevated levels of several chemokines and cytokines. Death and hemorrhage were associated with elevated thrombomodulin and ferritin levels. Hemorrhage was also associated with elevated levels of soluble intracellular adhesion molecule. Viremia was independently associated with elevated levels of tissue factor and tissue plasminogen activator. Finally, samples from nonfatal cases had higher levels of sCD40L. CONCLUSIONS These novel associations provide a better understanding of EHF pathophysiology and a starting point for researching new potential targets for therapeutic interventions.


Journal of Virology | 2003

Crimean-Congo Hemorrhagic Fever Virus Glycoprotein Proteolytic Processing by Subtilase SKI-1

Martin J. Vincent; Angela J. Sanchez; Bobbie R. Erickson; Ajoy Basak; Michel Chrétien; Nabil G. Seidah; Stuart T. Nichol

ABSTRACT Crimean-Congo hemorrhagic fever (CCHF) virus is a tick-borne member of the genus Nairovirus, family Bunyaviridae. The mature virus glycoproteins, Gn and Gc (previously referred to as G2 and G1), are generated by proteolytic cleavage from precursor proteins. The amino termini of Gn and Gc are immediately preceded by tetrapeptides RRLL and RKPL, respectively, leading to the hypothesis that SKI-1 or related proteases may be involved (A. J. Sanchez, M. J. Vincent, and S. T. Nichol, J. Virol. 76:7263-7275, 2002). In vitro peptide cleavage data show that an RRLL peptide representing the Gn processing site is efficiently cleaved by SKI-1 protease, whereas an RKPL peptide representing the Gc processing site is cleaved at negligible levels. The efficient cleavage of RRLL peptide is consistent with the known recognition sequences of SKI-1, including the sequence determinants involved in the cleavage of the Lassa virus (family Arenaviridae) glycoprotein precursor. These in vitro findings were confirmed by expression of wild-type or mutant CCHF virus glycoproteins in CHO cells engineered to express functional or nonfunctional SKI-1. Gn processing was found to be dependent on functional SKI-1, whereas Gc processing was not. Gn processing occurred in the endoplasmic reticulum-cis Golgi compartments and was dependent on an R at the −4 position within the RRLL recognition motif, consistent with the known cleavage properties of SKI-1. Comparison of SKI-1 cleavage efficiency between peptides representing Lassa virus GP2 and CCHF virus Gn cleavage sites suggests that amino acids flanking the RRLL may modulate the efficiency. The apparent lack of SKI-1 cleavage at the CCHF virus Gc RKPL site indicates that related proteases, other than SKI-1, are likely to be involved in the processing at this site and identical or similar sites utilized in several New World arenaviruses.


Journal of Virology | 2008

Multiple Virus Lineages Sharing Recent Common Ancestry Were Associated with a Large Rift Valley Fever Outbreak among Livestock in Kenya during 2006-2007

Brian H. Bird; Jane W. Githinji; Joseph M. Macharia; Jacqueline L. Kasiiti; Rees M. Muriithi; Stephen G. Gacheru; Joseph O. Musaa; Jonathan S. Towner; Serena A. Reeder; Jennifer B. Oliver; Thomas L. Stevens; Bobbie R. Erickson; Laura T. Morgan; Marina L. Khristova; Amy L. Hartman; James A. Comer; Pierre E. Rollin; Thomas G. Ksiazek; Stuart T. Nichol

ABSTRACT Rift Valley fever (RVF) virus historically has caused widespread and extensive outbreaks of severe human and livestock disease throughout Africa, Madagascar, and the Arabian Peninsula. Following unusually heavy rainfall during the late autumn of 2006, reports of human and animal illness consistent with RVF virus infection emerged across semiarid regions of the Garissa District of northeastern Kenya and southern Somalia. Following initial RVF virus laboratory confirmation, a high-throughput RVF diagnostic facility was established at the Kenyan Central Veterinary Laboratories in Kabete, Kenya, to support the real-time identification of infected livestock and to facilitate outbreak response and control activities. A total of 3,250 specimens from a variety of animal species, including domesticated livestock (cattle, sheep, goats, and camels) and wildlife collected from a total of 55 of 71 Kenyan administrative districts, were tested by molecular and serologic assays. Evidence of RVF infection was found in 9.2% of animals tested and across 23 districts of Kenya, reflecting the large number of affected livestock and the geographic extent of the outbreak. The complete S, M, and/or L genome segment sequence was obtained from a total of 31 RVF virus specimens spanning the entire known outbreak period (December-May) and geographic areas affected by RVF virus activity. Extensive genomic analyses demonstrated the concurrent circulation of multiple virus lineages, gene segment reassortment, and the common ancestry of the 2006/2007 outbreak viruses with those from the 1997-1998 east African RVF outbreak. Evidence of recent increases in genomic diversity and effective population size 2 to 4 years prior to the 2006-2007 outbreak also was found, indicating ongoing RVF virus activity and evolution during the interepizootic/epidemic period. These findings have implications for further studies of basic RVF virus ecology and the design of future surveillance/diagnostic activities, and they highlight the critical need for safe and effective vaccines and antiviral compounds to combat this significant veterinary and public health threat.


Virology Journal | 2005

Chloroquine is a potent inhibitor of SARS coronavirus infection and spread

Martin J. Vincent; Éric Bergeron; Suzanne Benjannet; Bobbie R. Erickson; Pierre E. Rollin; Thomas G. Ksiazek; Nabil G. Seidah; Stuart T. Nichol

BackgroundSevere acute respiratory syndrome (SARS) is caused by a newly discovered coronavirus (SARS-CoV). No effective prophylactic or post-exposure therapy is currently available.ResultsWe report, however, that chloroquine has strong antiviral effects on SARS-CoV infection of primate cells. These inhibitory effects are observed when the cells are treated with the drug either before or after exposure to the virus, suggesting both prophylactic and therapeutic advantage. In addition to the well-known functions of chloroquine such as elevations of endosomal pH, the drug appears to interfere with terminal glycosylation of the cellular receptor, angiotensin-converting enzyme 2. This may negatively influence the virus-receptor binding and abrogate the infection, with further ramifications by the elevation of vesicular pH, resulting in the inhibition of infection and spread of SARS CoV at clinically admissible concentrations.ConclusionChloroquine is effective in preventing the spread of SARS CoV in cell culture. Favorable inhibition of virus spread was observed when the cells were either treated with chloroquine prior to or after SARS CoV infection. In addition, the indirect immunofluorescence assay described herein represents a simple and rapid method for screening SARS-CoV antiviral compounds.

Collaboration


Dive into the Bobbie R. Erickson's collaboration.

Top Co-Authors

Avatar

Stuart T. Nichol

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Pierre E. Rollin

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Brian H. Bird

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Thomas G. Ksiazek

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

César G. Albariño

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

James A. Comer

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Marina L. Khristova

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Tara K. Sealy

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Christina F. Spiropoulou

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge