Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bobo Dang is active.

Publication


Featured researches published by Bobo Dang.


Neuron | 2015

Photosensitivity of Neurons Enabled by Cell-Targeted Gold Nanoparticles

João L. Carvalho-de-Souza; Jeremy S. Treger; Bobo Dang; Stephen B. H. Kent; David R. Pepperberg; Francisco Bezanilla

Unmodified neurons can be directly stimulated with light to produce action potentials, but such techniques have lacked localization of the delivered light energy. Here we show that gold nanoparticles can be conjugated to high-avidity ligands for a variety of cellular targets. Once bound to a neuron, these particles transduce millisecond pulses of light into heat, which changes membrane capacitance, depolarizing the cell and eliciting action potentials. Compared to non-functionalized nanoparticles, ligand-conjugated nanoparticles highly resist convective washout and enable photothermal stimulation with lower delivered energy and resulting temperature increase. Ligands targeting three different membrane proteins were tested; all showed similar activity and washout resistance. This suggests that many types of ligands can be bound to nanoparticles, preserving ligand and nanoparticle function, and that many different cell phenotypes can be targeted by appropriate choice of ligand. The findings have applications as an alternative to optogenetics and potentially for therapies involving neuronal photostimulation.


Journal of the American Chemical Society | 2013

Native Chemical Ligation at Asx-Cys, Glx-Cys: Chemical Synthesis and High-Resolution X-ray Structure of ShK Toxin by Racemic Protein Crystallography.

Bobo Dang; Tomoya Kubota; Kalyaneswar Mandal; Francisco Bezanilla; Stephen B. H. Kent

We have re-examined the utility of native chemical ligation at -Gln/Glu-Cys- [Glx-Cys] and -Asn/Asp-Cys- [Asx-Cys] sites. Using the improved thioaryl catalyst 4-mercaptophenylacetic acid (MPAA), native chemical ligation could be performed at -Gln-Cys- and Asn-Cys- sites without side reactions. After optimization, ligation at a -Glu-Cys- site could also be used as a ligation site, with minimal levels of byproduct formation. However, -Asp-Cys- is not appropriate for use as a site for native chemical ligation because of formation of significant amounts of β-linked byproduct. The feasibility of native chemical ligation at -Gln-Cys- enabled a convergent total chemical synthesis of the enantiomeric forms of the ShK toxin protein molecule. The D-ShK protein molecule was ~50,000-fold less active in blocking the Kv1.3 channel than the L-ShK protein molecule. Racemic protein crystallography was used to obtain high-resolution X-ray diffraction data for ShK toxin. The structure was solved by direct methods and showed significant differences from the previously reported NMR structures in some regions of the ShK protein molecule.


Angewandte Chemie | 2014

Total Chemical Synthesis of Biologically Active Fluorescent Dye‐Labeled Ts1 Toxin

Bobo Dang; Tomoya Kubota; Ana M. Correa; Francisco Bezanilla; Stephen B. H. Kent

Ts1 toxin is a protein found in the venom of the Brazilian scorpion Tityus serrulatus. Ts1 binds to the domain II voltage sensor in the voltage-gated sodium channel Nav and modifies its voltage dependence. In the work reported here, we established an efficient total chemical synthesis of the Ts1 protein using modern chemical ligation methods and demonstrated that it was fully active in modifying the voltage dependence of the rat skeletal muscle voltage-gated sodium channel rNav1.4 expressed in oocytes. Total synthesis combined with click chemistry was used to label the Ts1 protein molecule with the fluorescent dyes Alexa-Fluor 488 and Bodipy. Dye-labeled Ts1 proteins retained their optical properties and bound to and modified the voltage dependence of the sodium channel Nav. Because of the highly specific binding of Ts1 toxin to Nav, successful chemical synthesis and labeling of Ts1 toxin provides an important tool for biophysical studies, histochemical studies, and opto-pharmacological studies of the Nav protein.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Mapping of voltage sensor positions in resting and inactivated mammalian sodium channels by LRET

Tomoya Kubota; Thomas Durek; Bobo Dang; Rocio K. Finol-Urdaneta; David J. Craik; Stephen B. H. Kent; Robert J. French; Francisco Bezanilla; Ana M. Correa

Significance Physical activities of our body and extremities are achieved by the propagation of electrical signals called action potentials from our brain, through nerves, to skeletal muscles. Voltage-gated sodium channel (Navs) play essential roles in the generation and propagation of action potentials in such excitable cells. Although mammalian Nav function has been studied comprehensively, the precise structural basis for the gating mechanisms has not been fully clarified. In this study, we have used lanthanide-based resonance energy transfer to obtain dynamic structural information in mammalian Nav gating. Our data define a geometrical map of Navs with the bound toxins and reveal voltage-induced structural changes related to channel gating, which lead us further toward an understanding of the gating mechanism in mammalian Navs. Voltage-gated sodium channels (Navs) play crucial roles in excitable cells. Although vertebrate Nav function has been extensively studied, the detailed structural basis for voltage-dependent gating mechanisms remain obscure. We have assessed the structural changes of the Nav voltage sensor domain using lanthanide-based resonance energy transfer (LRET) between the rat skeletal muscle voltage-gated sodium channel (Nav1.4) and fluorescently labeled Nav1.4-targeting toxins. We generated donor constructs with genetically encoded lanthanide-binding tags (LBTs) inserted at the extracellular end of the S4 segment of each domain (with a single LBT per construct). Three different Bodipy-labeled, Nav1.4-targeting toxins were synthesized as acceptors: β-scorpion toxin (Ts1)-Bodipy, KIIIA-Bodipy, and GIIIA-Bodipy analogs. Functional Nav-LBT channels expressed in Xenopus oocytes were voltage-clamped, and distinct LRET signals were obtained in the resting and slow inactivated states. Intramolecular distances computed from the LRET signals define a geometrical map of Nav1.4 with the bound toxins, and reveal voltage-dependent structural changes related to channel gating.


Organic Letters | 2015

Enhanced Solvation of Peptides Attached to “Solid-Phase” Resins: Straightforward Syntheses of the Elastin Sequence Pro-Gly-Val-Gly-Val-Pro-Gly-Val-Gly-Val

Bobo Dang; Balamurugan Dhayalan; Stephen B. H. Kent

The solubility-enhancing power of covalent attachment to solvent-swollen cross-linked resin supports was illustrated by syntheses of the highly aggregating elastin-derived 10-residue peptide sequence Pro-Gly-Val-Gly-Val-Pro-Gly-Val-Gly-Val using standard protocols for both Boc and Fmoc chemistry SPPS.


Angewandte Chemie | 2016

Elucidation of the Covalent and Tertiary Structures of Biologically Active Ts3 Toxin

Bobo Dang; Tomoya Kubota; Kalyaneswar Mandal; Ana M. Correa; Francisco Bezanilla; Stephen B. H. Kent

Ts3 is an alpha scorpion toxin from the venom of the Brazilian scorpion Tityus serrulatus. Ts3 binds to the domain IV voltage sensor of voltage-gated sodium channels (Nav ) and slows down their fast inactivation. The covalent structure of the Ts3 toxin is uncertain, and the structure of the folded protein molecule is unknown. Herein, we report the total chemical synthesis of four candidate Ts3 toxin protein molecules and the results of structure-activity studies that enabled us to establish the covalent structure of biologically active Ts3 toxin. We also report the synthesis of the mirror image form of the Ts3 protein molecule, and the use of racemic protein crystallography to determine the folded (tertiary) structure of biologically active Ts3 toxin by X-ray diffraction.


Proceedings of the National Academy of Sciences of the United States of America | 2017

De novo design of covalently constrained mesosize protein scaffolds with unique tertiary structures.

Bobo Dang; Haifan Wu; Vikram Khipple Mulligan; Marco Mravic; Yibing Wu; Thomas Lemmin; Alex Ford; Daniel-Adriano Silva; David Baker; William F. DeGrado

Significance The incorporation of a small organic molecule into a protein core opens the door to create previously inaccessible three-dimensional structures. When combined with modern computational methods, we show that CovCore proteins can be designed with predictable folds. The small organic molecule is incorporated as an intrinsic part of the protein core, forming both covalent and noncovalent interactions, which help define the unique tertiary structures. The design methodology and experimental strategies are compatible with combinatorial library screening methods and hence hold promise for a variety of applications including inhibitors of protein–protein interactions. The folding of natural proteins typically relies on hydrophobic packing, metal binding, or disulfide bond formation in the protein core. Alternatively, a 3D structure can be defined by incorporating a multivalent cross-linking agent, and this approach has been successfully developed for the selection of bicyclic peptides from large random-sequence libraries. By contrast, there is no general method for the de novo computational design of multicross-linked proteins with predictable and well-defined folds, including ones not found in nature. Here we use Rosetta and Tertiary Motifs (TERMs) to design small proteins that fold around multivalent cross-linkers. The hydrophobic cross-linkers stabilize the fold by macrocyclic restraints, and they also form an integral part of a small apolar core. The designed CovCore proteins were prepared by chemical synthesis, and their structures were determined by solution NMR or X-ray crystallography. These mesosized proteins, lying between conventional proteins and small peptides, are easily accessible either through biosynthetic precursors or chemical synthesis. The unique tertiary structures and ease of synthesis of CovCore proteins indicate that they should provide versatile templates for developing inhibitors of protein–protein interactions.


Nature Communications | 2017

Spontaneous and specific chemical cross-linking in live cells to capture and identify protein interactions

Bing Yang; Shibing Tang; Cheng Ma; Shang-Tong Li; Guang-Can Shao; Bobo Dang; William F. DeGrado; Meng-Qiu Dong; Peng George Wang; Sheng Ding; Lei Wang

Covalently locking interacting proteins in situ is an attractive strategy for addressing the challenge of identifying weak and transient protein interactions, yet it is demanding to execute chemical reactions in live systems in a biocompatible, specific, and autonomous manner. Harnessing proximity-enabled reactivity of an unnatural amino acid incorporated in the bait toward a target residue of unknown proteins, here we genetically encode chemical cross-linkers (GECX) to cross-link interacting proteins spontaneously and selectively in live cells. Obviating an external trigger for reactivity and affording residue specificity, GECX enables the capture of low-affinity protein binding (affibody with Z protein), elusive enzyme-substrate interaction (ubiquitin-conjugating enzyme UBE2D3 with substrate PCNA), and endogenous proteins interacting with thioredoxin in E. coli cells, allowing for mass spectrometric identification of interacting proteins and crosslinking sites. This live cell chemistry-based approach should be valuable for investigating currently intangible protein interactions in vivo for better understanding of biology in physiological settings.Proteins associate via weak and transient interactions that are challenging to identify in vivo. Here, the authors use a genetically encoded chemical cross-linker to covalently lock interacting proteins in live cells, allowing them to identify the captured proteins by mass spectrometry.


Angewandte Chemie | 2017

Inversion of the Side-Chain Stereochemistry of Indvidual Thr or Ile Residues in a Protein Molecule: Impact on the Folding, Stability, and Structure of the ShK Toxin

Bobo Dang; Rong Shen; Tomoya Kubota; Kalyaneswar Mandal; Francisco Bezanilla; Benoît Roux; Stephen B. H. Kent

ShK toxin is a cysteine-rich 35-residue protein ion-channel ligand isolated from the sea anemone Stichodactyla helianthus. In this work, we studied the effect of inverting the side chain stereochemistry of individual Thr or Ile residues on the properties of the ShK protein. Molecular dynamics simulations were used to calculate the free energy cost of inverting the side-chain stereochemistry of individual Thr or Ile residues. Guided by the computational results, we used chemical protein synthesis to prepare three ShK polypeptide chain analogues, each containing either an allo-Thr or an allo-Ile residue. The three allo-Thr or allo-Ile-containing ShK polypeptides were able to fold into defined protein products, but with different folding propensities. Their relative thermal stabilities were measured and were consistent with the MD simulation data. Structures of the three ShK analogue proteins were determined by quasi-racemic X-ray crystallography and were similar to wild-type ShK. All three ShK analogues retained ion-channel blocking activity.


Journal of Biological Chemistry | 2017

Reinvestigation of the biological activity of D-allo-ShK protein

Bobo Dang; Sandeep Chhabra; Michael W. Pennington; Raymond S. Norton; Stephen B. H. Kent

ShK toxin from the sea anemone Stichodactyla helianthus is a 35-residue protein that binds to the Kv1.3 ion channel with high affinity. Recently we determined the X-ray structure of ShK toxin by racemic crystallography, in the course of which we discovered that d-ShK has a near-background IC50 value ∼50,000 times lower than that of the l-ShK toxin. This lack of activity was at odds with previously reported results for an ShK diastereomer designated d-allo-ShK, for which significant biological activity had been observed in a similar receptor-blocking assay. As reported, d-allo-ShK was made up of d-amino acids, but with retention of the natural stereochemistry of the chiral side chains of the Ile and Thr residues, i.e. containing d-allo-Ile and d-allo-Thr along with d-amino acids and glycine. To understand its apparent biological activity, we set out to chemically synthesize d-allo-ShK and determine its X-ray structure by racemic crystallography. Using validated allo-Thr and allo-Ile, both l-allo-ShK and d-allo-ShK polypeptide chains were prepared by total chemical synthesis. Neither the l-allo-ShK nor the d-allo-ShK polypeptides folded, whereas both l-ShK and d-ShK folded smoothly under the same conditions. Re-examination of NMR spectra of the previously reported d-allo-ShK protein revealed that diagnostic Thr and Ile signals were the same as for authentic d-ShK. On the basis of these results, we conclude that the previously reported d-allo-ShK was in fact d-ShK, the true enantiomer of natural l-ShK toxin, and that the apparent biological activity may have arisen from inadvertent contamination with trace amounts of l-ShK toxin.

Collaboration


Dive into the Bobo Dang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. Pepperberg

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge