Bodil Øster
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bodil Øster.
Journal of Virology | 2002
Bodil Øster; Per Höllsberg
ABSTRACT Herpesvirus gene expression is divided into immediate-early (IE) or α genes, early (E) or β genes, and late (L) or γ genes on the basis of temporal expression and dependency on other gene products. By using real-time PCR, we have investigated the expression of 35 human herpesvirus 6B (HHV-6B) genes in T cells infected by strain PL-1. Kinetic analysis and dependency on de novo protein synthesis and viral DNA polymerase activity suggest that the HHV-6B genes segregate into six separate kinetic groups. The genes expressed early (groups I and II) and late (groups V and VI) corresponded well with IE and L genes, whereas the intermediate groups III and IV contained E and L genes. Although HHV-6B has characteristics similar to those of other roseoloviruses in its overall gene regulation, we detected three B-variant-specific IE genes. Moreover, genes that were independent of de novo protein synthesis clustered in an area of the viral genome that has the lowest identity to the HHV-6A variant. The organization of IE genes in an area of the genome that differs from that of HHV-6A underscores the distinct differences between HHV-6B and HHV-6A and may provide a basis for further molecular and immunological analyses to elucidate their different biological behaviors.
Journal of Virology | 2005
Bodil Øster; Bettina Bundgaard; Per Höllsberg
ABSTRACT We studied the interactions between human herpesvirus 6B (HHV-6B) and its host cell. Productive infections of T-cell lines led to G1/S- and G2/M-phase arrest in the cell cycle concomitant with an increased level and enhanced DNA-binding activity of p53. More than 70% of HHV-6B-infected cells did not bind annexin V, indicating that the majority of cells were not undergoing apoptosis. HHV-6B infection induced Ser20 and Ser15 phosphorylation on p53, and the latter was inhibited by caffeine, an ataxia telangiectasia mutated kinase inhibitor. Thus, a productive HHV-6B infection suppresses T-cell proliferation concomitant with the phosphorylation and accumulation of p53.
Journal of Biological Chemistry | 2008
Nicola J. MacLaine; Bodil Øster; Bettina Bundgaard; Jennifer A. Fraser; Carolyn Buckner; Pedro A. Lazo; David W. Meek; Per Höllsberg; Tedd R Hupp
The tumor suppressor protein p53 is activated by distinct cellular stresses including radiation, hypoxia, type I interferon, and DNA/RNA virus infection. The transactivation domain of p53 contains a phosphorylation site at Ser20 whose modification stabilizes the binding of the transcriptional co-activator p300 and whose mutation in murine transgenics induces B-cell lymphoma. Although the checkpoint kinase CHK2 is implicated in promoting Ser20 site phosphorylation after irradiation, the enzyme that triggers this phosphorylation after DNA viral infection is undefined. Using human herpesvirus 6B (HHV-6B) as a virus that induces Ser20 site phosphorylation of p53 in T-cells, we sought to identify the kinase responsible for this virus-induced p53 modification. The p53 Ser20 kinase was fractionated and purified using cation, anion, and dye-ligand exchange chromatography. Mass spectrometry identified casein kinase 1 (CK1) and vaccinia-related kinase 1 (VRK1) as enzymes that coeluted with virus-induced Ser20 site kinase activity. Immunodepletion of CK1 but not VRK1 removed the kinase activity from the peak fraction, and bacterially expressed CK1 exhibited Ser20 site kinase activity equivalent to that of the virus-induced native CK1. CK1 modified p53 in a docking-dependent manner, which is similar to other known Ser20 site p53 kinases. Low levels of the CK1 inhibitor D4476 selectively inhibited HHV-6B-induced Ser20 site phosphorylation of p53. However, x-ray-induced Ser20 site phosphorylation of p53 was not blocked by D4476. These data highlight a central role for CK1 as the Ser20 site kinase for p53 in DNA virus-infected cells but also suggest that distinct stresses may selectively trigger different protein kinases to modify the transactivation domain of p53 at Ser20.
Journal of Virology | 2006
Simon Metz Pedersen; Bodil Øster; Bettina Bundgaard; Per Höllsberg
ABSTRACT Human herpesvirus (HHV) 6A induce fusion from without (FFWO), whereas HHV-6B is believed to be ineffective in this process. Here, we demonstrate that HHV-6B induces rapid fusion in both epithelial cells and lymphocytes. The fusion was identified 1 h postinfection, could be inhibited by antibodies to HHV-6B gH and to the cellular receptor CD46, and was dependent on virus titer but independent of de novo protein synthesis and UV inactivation of the virus. Comparisons indicate that HHV-6A is only 10-fold more effective in inducing FFWO than HHV-6B. These data demonstrate that HHV-6B can induce FFWO in epithelial cells and lymphocytes.
Journal of Clinical Virology | 2006
Bodil Øster; Maja Døvling Kaspersen; Emil Kofod-Olsen; Bettina Bundgaard; Per Höllsberg
BACKGROUNDnVarious forms of cellular stress can activate the tumour suppressor protein p53, an important regulator of cell cycle arrest, apoptosis, and cellular senescence. Cells infected by human herpesvirus 6B (HHV-6B) accumulate aberrant amounts of p53.nnnOBJECTIVESnThe aim of this study was to investigate the role of p53 accumulation in the HHV-6B-induced cell cycle arrest.nnnSTUDY DESIGNnThe role of p53 was studied using the p53 inhibitor pifithrin-a, and cells genetically deficient in functional p53 by homologous recombination.nnnRESULTSnIn response to HHV-6B infection, epithelial cells were arrested in the G1/S phase of the cell cycle concomitant with an aberrant accumulation of p53. However, the known p53-induced mediator of cell cycle arrest, p21, was not upregulated. Approximately 90% of the cells expressed HHV-6B p41, indicative of viral infection. The presence of pifithrin-a, a p53 inhibitor, did not reverse the HHV-6B-induced cell cycle block. In support of this, HHV-6B infection of p53(-/-) cells induced a cell cycle block before S-phase with kinetics similar to or faster than that observed by infection in wt cells.nnnCONCLUSIONSnHHV-6B infection inhibited host cell proliferation concomitantly with p53 accumulation, but importantly the block in cell cycle occurred by a pathway independent of p53.
Journal of General Virology | 2008
Bodil Øster; Emil Kofod-Olsen; Bettina Bundgaard; Per Höllsberg
Human herpesvirus 6B (HHV-6B) induces significant accumulation of p53 in both the nucleus and cytoplasm during infection. Activation of p53 by DNA damage is known to induce either growth arrest or apoptosis; nevertheless, HHV-6B-infected cells are arrested in their cell cycle independently of p53, and only a minor fraction of the infected cells undergoes apoptosis. Using pifithrin-alpha, a p53 inhibitor, and p53-null cells, this study showed that infected epithelial cells accumulated viral transcripts and proteins to a significantly higher degree in the absence of active p53. Moreover, HHV-6B-induced cytopathic effects were greatly enhanced in the absence of p53. This suggests that, in epithelial cells, some of the functions of p53 leading to cell-cycle arrest and apoptosis are restrained by HHV-6B infection, whereas other cellular defences, causing inhibition of virus transcription, are partially retained.
PLOS ONE | 2013
Emil Kofod-Olsen; Janni L. M. Møller; Mariane H. Schleimann; Bettina Bundgaard; Rasmus O. Bak; Bodil Øster; Jacob Giehm Mikkelsen; Ted R. Hupp; Per Höllsberg
Infection with human herpesvirus (HHV)-6B alters cell cycle progression and stabilizes tumor suppressor protein p53. In this study, we have analyzed the activity of p53 after stimulation with p53-dependent and -independent DNA damaging agents during HHV-6B infection. Microarray analysis, Western blotting and confocal microscopy demonstrated that HHV-6B-infected cells were resistant to p53-dependent arrest and cell death after γ irradiation in both permissive and non-permissive cell lines. In contrast, HHV-6B-infected cells died normally through p53-independet DNA damage induced by UV radiation. Moreover, we identified a viral protein involved in inhibition of p53 during HHV-6B-infection. The protein product from the U19 ORF was able to inhibit p53-dependent signaling following γ irradiation in a manner similar to that observed during infection. Similar to HHV-6B infection, overexpression of U19 failed to rescue the cells from p53-independent death induced by UV radiation. Hence, infection with HHV-6B specifically blocks DNA damage-induced cell death associated with p53 without inhibiting the p53-independent cell death response. This block in p53 function can in part be ascribed to the activities of the viral U19 protein.
Biological Procedures Online | 2002
Bodil Øster; Per Höllsberg
Human herpesvirus (HHV)-6B is a pathogen causing latent infection in virtually all humans. Nevertheless, the interaction of HHV-6B with its host cells is poorly understood. Although HHV-6B is approximately 90% homologous to HHV-6A, it expresses certain B-specific genes. In order to quantify the amount of expressed viral mRNA we have developed a method using real-time PCR on a LightCycler instrument. Here we describe an assay for the detection of the HHV-6B B6 mRNA, but our approach can easily be extended to involve other mRNAs. This method is useful during the study of HHV-6B biology and offers reliable and reproducible, quantitative detection of viral mRNA below the attomol range.
Scandinavian Journal of Immunology | 2010
L. B. Bertelsen; Charlotte Christie Petersen; Emil Kofod-Olsen; Bodil Øster; Per Höllsberg; Ralf Agger; Marianne Hokland
Human herpesvirus 6B (HHV‐6B) is the causative agent of the common childhood febrile illness, exanthema subitum. The virus is predominantly regarded as a T‐cell tropic virus, although in reality it has the ability to infect a wide variety of cell types including monocytes, macrophages and dendritic cells (DC). Although DC are important immune regulators, the modulating effects of HHV‐6B on DC are controversial. Here, we examine the phenotypic and functional consequences of HHV‐6B infection of DC. The addition of HHV‐6B to immature DC led to expression of the nuclear viral p41 protein and cell surface expression of the viral glycoprotein gp60/110 consistent with HHV‐6B infection. Nevertheless, HHV‐6B did not induce noticeable cytopathogenic effects or cell death in infected DC. Importantly, HHV‐6B infection induced a partial phenotypic maturation of immature DC as demonstrated by a substantial increase in the expression of HLA‐DR, CD86 and CD40, whereas only a minor increase in CD80 and CD83 was observed. This phenotypic maturation was, however, not followed by functional maturation, because HHV‐6B infection did not induce IL‐10 and IL‐12p70 production in immature DC. However, infected DC were still able to react to bacteria‐derived stimuli such as lipopolysaccaharide by an even more pronounced production of IL‐10 and IL‐12p70 when compared to that of uninfected DC.
Virology | 2014
Emil Kofod-Olsen; Susanne Pettersson; Maura Wallace; Ahmed Basim Abduljabar; Bodil Øster; Ted R. Hupp; Per Höllsberg
In order to establish a successful infection, it is of crucial importance for invading viruses to alter the activities of the regulatory protein p53. Beta-herpesviruses stabilize p53 and likely direct its activities towards generation of a replication-friendly environment. We here study the mechanisms behind HHV-6B-induced stabilization and inactivation of p53. Stable transgene expression of the HHV-6B protein U19 was sufficient to achieve upregulation of p53. U19 bound directly to the p53-regulating protein HDM2 in vitro, co-precipitated together with HDM2 in lysates, and co-localized with HDM2 in the nucleus when overexpressed. U19 contained a sequence with a putative p53 BOX I-motif for HDM2 binding. Mutation of the two key amino acids within this motif was sufficient to inhibit all the described U19 functions. Our study provides further insight into p53-modulating strategies used by herpesviruses and elucidates a mechanism used by HHV-6B to circumvent the antiviral response.