Bodour Salhia
Translational Genomics Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bodour Salhia.
Cancer Research | 2005
Bodour Salhia; Frederieke Rutten; Mitsutoshi Nakada; Christian Beaudry; Michael E. Berens; Allison Kwan; James T. Rutka
Malignant astrocytomas are highly invasive neoplasms infiltrating diffusely into regions of normal brain. Whereas the molecular and cellular mechanisms governing astrocytoma invasion remain poorly understood, evidence in other cell systems has implicated a role for the Rho-GTPases in cell motility and invasion. Here, we examine how the inhibition or activation of Rho-kinase (ROCK) affects astrocytoma morphology, motility, and invasion. ROCK was inhibited in astrocytoma cells by using 5 to 100 mumol/L of Y27632 or by expressing the dominant-negative ROCK mutant, RB/PH TT. ROCK activation was achieved by expressing a constitutively active mutant, CAT. ROCK inhibition led to morphologic and cytoskeletal alterations characterized by an increase in the number and length of cell processes, increased membrane ruffling, and collapse of actin stress fibers. Using two-dimensional radial migration and Boyden chamber assays, we show that astrocytoma migration and invasion were increased at least 2-fold by ROCK inhibition. On the contrary, ROCK activation significantly inhibited migration and invasion of astrocytoma cells. Furthermore, using a Rac-GTP pull-down assay, we show that Rac1 is activated as a consequence of ROCK inhibition. Finally, we show that treatment of astrocytoma cells with small interfering RNA duplexes specific for Rac1-reversed stellation, prevented membrane ruffling formation and abrogated the increased motility observed following treatment with Y27632. Our data show that Rac1 plays a major role in astrocytoma morphology, motility, and invasion. These findings warrant further investigation to determine precisely how the modulation of Rac1 and ROCK can be exploited to inhibit glioma invasion.
American Journal of Pathology | 2008
Bodour Salhia; Nhan L. Tran; Amanda Chan; Amparo Wolf; Mitsutoshi Nakada; Fiona Rutka; Matthew J. Ennis; Wendy S. McDonough; Michael E. Berens; Marc Symons; James T. Rutka
Malignant gliomas are characterized by their ability to invade normal brain tissue. We have previously shown that the small GTPase Rac1 plays a role in both migration and invasion in gliomas. Here, we aim to identify Rac-activating guanine nucleotide exchange factors (GEFs) that mediate glioblastoma invasiveness. Using a brain tumor expression database, we identified three GEFs, Trio, Ect2, and Vav3, that are expressed at higher levels in glioblastoma versus low-grade glioma. The expression of these GEFs is also associated with poor patient survival. Quantitative real-time polymerase chain reaction and immunohistochemical analyses on an independent set of tumors confirmed that these GEFs are overexpressed in glioblastoma as compared with either nonneoplastic brain or low-grade gliomas. In addition, depletion of Trio, Ect2, and Vav3 by siRNA oligonucleotides suppresses glioblastoma cell migration and invasion. Depletion of either Ect2 or Trio also reduces the rate of cell proliferation. These results suggest that targeting GEFs may present novel strategies for anti-invasive therapy for malignant gliomas.
Nature Genetics | 2014
Pilar Ramos; Anthony N. Karnezis; David Craig; Aleksandar Sekulic; Megan Russell; William Hendricks; Jason J. Corneveaux; Michael T. Barrett; Karey Shumansky; Yidong Yang; Sohrab P. Shah; Leah M Prentice; Marco A. Marra; Jeffrey Kiefer; Victoria Zismann; Bodour Salhia; Jaime Prat; Emanuela D'Angelo; Blaise Clarke; Joseph G. Pressey; John H Farley; Stephen P Anthony; Richard Roden; Heather E. Cunliffe; David Huntsman; Jeffrey M. Trent
Small cell carcinoma of the ovary of hypercalcemic type (SCCOHT) is an extremely rare, aggressive cancer affecting children and young women. We identified germline and somatic inactivating mutations in the SWI/SNF chromatin-remodeling gene SMARCA4 in 69% (9/13) of SCCOHT cases in addition to SMARCA4 protein loss in 82% (14/17) of SCCOHT tumors but in only 0.4% (2/485) of other primary ovarian tumors. These data implicate SMARCA4 in SCCOHT oncogenesis.
Molecular Cancer Therapeutics | 2013
David Craig; Joyce O'Shaughnessy; Jeffrey Kiefer; Jessica Aldrich; Shripad Sinari; Tracy M. Moses; Shukmei Wong; Jennifer Dinh; Alexis Christoforides; Joanne L. Blum; Cristi L Aitelli; Cynthia Osborne; Tyler Izatt; Ahmet Kurdoglu; Angela Baker; Julie Koeman; Catalin Barbacioru; Onur Sakarya; Francisco M. De La Vega; Asim Siddiqui; Linh Hoang; Paul R. Billings; Bodour Salhia; Anthony W. Tolcher; Jeffrey M. Trent; Spyro Mousses; Daniel D. Von Hoff; John D. Carpten
Triple-negative breast cancer (TNBC) is characterized by the absence of expression of estrogen receptor, progesterone receptor, and HER-2. Thirty percent of patients recur after first-line treatment, and metastatic TNBC (mTNBC) has a poor prognosis with median survival of one year. Here, we present initial analyses of whole genome and transcriptome sequencing data from 14 prospective mTNBC. We have cataloged the collection of somatic genomic alterations in these advanced tumors, particularly those that may inform targeted therapies. Genes mutated in multiple tumors included TP53, LRP1B, HERC1, CDH5, RB1, and NF1. Notable genes involved in focal structural events were CTNNA1, PTEN, FBXW7, BRCA2, WT1, FGFR1, KRAS, HRAS, ARAF, BRAF, and PGCP. Homozygous deletion of CTNNA1 was detected in 2 of 6 African Americans. RNA sequencing revealed consistent overexpression of the FOXM1 gene when tumor gene expression was compared with nonmalignant breast samples. Using an outlier analysis of gene expression comparing one cancer with all the others, we detected expression patterns unique to each patients tumor. Integrative DNA/RNA analysis provided evidence for deregulation of mutated genes, including the monoallelic expression of TP53 mutations. Finally, molecular alterations in several cancers supported targeted therapeutic intervention on clinical trials with known inhibitors, particularly for alterations in the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways. In conclusion, whole genome and transcriptome profiling of mTNBC have provided insights into somatic events occurring in this difficult to treat cancer. These genomic data have guided patients to investigational treatment trials and provide hypotheses for future trials in this irremediable cancer. Mol Cancer Ther; 12(1); 104–16. ©2012 AACR.
Journal of Neuro-oncology | 2001
Yasuhiko Akiyama; Shin Jung; Bodour Salhia; Sangpyung Lee; Sherri-Lynn Hubbard; Michael D. Taylor; Todd G. Mainprize; Kotaro Akaishi; Wouter R. van Furth; James T. Rutka
The extracellular matrix (ECM) of the central nervous system (CNS) is enriched in hyaluronate (HA). Ubiquitous receptors for HA are CD44 and the Receptor for HA-Mediated Motility known as RHAMM. In the present study, we have investigated the potential role of CD44 and RHAMM in the migration and proliferation of human astrocytoma cells. HA-receptor expression in brain tumor cell lines and surgical specimens was determined by immunocytochemistry and western blot analyses. The ability of RHAMM to bind ligand was determined through cetylpyridinium chloride (CPC) precipitations of brain tumor lysates in HA-binding assays. The effects of HA, CD44 blocking antibodies, and RHAMM soluble peptide on astrocytoma cell growth and migration was determined using MTT and migration assays. Our results show that the expression of the HA-receptors, CD44, and RHAMM, is virtually ubiquitous amongst glioma cell lines, and glioma tumor specimens. There was a gradient of expression amongst gliomas with high grade gliomas expressing more RHAMM and CD44 than did lower grade lesions or did normal human astrocytes or non-neoplastic specimens of human brain. Specific RHAMM variants of 85- and 58-kDa size were shown to bind avidly to HA following CPC precipitations. RHAMM soluble peptide inhibited glioma cell line proliferation in a dose-dependent fashion. Finally, while anti-CD44 antibodies did not inhibit the migration of human glioma cells, soluble peptides directed at the HA-binding domain of RHAMM inhibited glioma migration both on and off an HA-based ECM. These data support the notion that HA-receptors contribute to brain tumor adhesion, proliferation, and migration, biological features which must be better understood before more effective treatment strategies for these tumors can be found.
Nature Reviews Clinical Oncology | 2014
Taofeek K. Owonikoko; Jack L. Arbiser; Amelia Zelnak; H. Shu; Hyunsuk Shim; Adam Robin; Steven N. Kalkanis; Timothy G. Whitsett; Bodour Salhia; Nhan L. Tran; Timothy C. Ryken; Michael K. Moore; Kathleen M. Egan; Jeffrey J. Olson
Metastatic tumours involving the brain overshadow primary brain neoplasms in frequency and are an important complication in the overall management of many cancers. Importantly, advances are being made in understanding the molecular biology underlying the initial development and eventual proliferation of brain metastases. Surgery and radiation remain the cornerstones of the therapy for symptomatic lesions; however, image-based guidance is improving surgical technique to maximize the preservation of normal tissue, while more sophisticated approaches to radiation therapy are being used to minimize the long-standing concerns over the toxicity of whole-brain radiation protocols used in the past. Furthermore, the burgeoning knowledge of tumour biology has facilitated the entry of systemically administered therapies into the clinic. Responses to these targeted interventions have ranged from substantial toxicity with no control of disease to periods of useful tumour control with no decrement in performance status of the treated individual. This experience enables recognition of the limits of targeted therapy, but has also informed methods to optimize this approach. This Review focuses on the clinically relevant molecular biology of brain metastases, and summarizes the current applications of these data to imaging, surgery, radiation therapy, cytotoxic chemotherapy and targeted therapy.
Expert Review of Molecular Diagnostics | 2006
Bodour Salhia; Nhan L. Tran; Marc Symons; Jeffrey A. Winkles; James T. Rutka; Michael E. Berens
The efficacy of treating malignant gliomas with adjuvant therapies remains largely unsuccessful due to the inability to effectively target invading cells. Although our understanding of glioma oncogenesis has steadily improved, the molecular mechanisms that mediate glioma invasion are still poorly understood. It is clear that genetic alterations in malignant gliomas affect cell proliferation and cell cycle control, which are the targets of most chemotherapeutic agents. However, effective therapy against cell invasion has been less successful. Future treatment protocols must incorporate pharmacotherapeutic strategies that target resistant infiltrative glioma cells as well as proliferating ones. Thus, delineating the point of convergence of signaling pathways, which mediate glioma invasion, proliferation and apoptosis, may identify novel targets that can serve as possible points of therapeutic intervention. The optimization of novel strategies will require reliable preclinical testing using an in vivo animal model of brain invasion. Current applications of existing animal models are not currently optimized or characterized for use in glioma invasion research. As such, the development of a bona fide brain invasion model in vivo must be established. Progress in understanding molecular mechanisms driving glioma invasion will be critical to the success of managing and improving the outcome of patients with this grave disease.
Brain Research | 2000
Bodour Salhia; Lilyana Angelov; Luba Roncari; Xiaoli Wu; Patrick Shannon; Abhijit Guha
Injury to the central nervous system (CNS) invokes a reparative response known as astrogliosis, characterized largely by hypertrophy, proliferation and increased expression of glial fibrillary acidic protein (GFAP), resulting in reactive astrocytosis. Based on our prior observation that peritumoral reactive astrocytes express Vascular Endothelial Growth Factor (VEGF), a highly potent and specific angiogenic growth factor, we have hypothesized that reactive astrocytosis also contributes to the neovascularization associated with astrogliosis. To evaluate this hypothesis we evaluated human surgical/autopsy specimens from a variety of CNS disorders that induce astrogliosis and an experimental CNS needle injury model in wild type and GFAP:Green Fluorescent Protein (GFP) transgenic mice. Using computer image semi-quantitative analysis we evaluated the number of GFAP-positive reactive astrocytes, degree of VEGF expression by these astrocytes, associated Factor VIII-positive microvascular density (MVD) and Ki-67 proliferating endothelial cells. The degree of reactive astrocytosis correlated to levels of VEGF immunoreactivity and MVD in the neuropathological specimens. The mouse-needle-stick brain injury model demonstrated this correlation was temporally and spatially related and maximal after 1 week. These results, involving both human pathology specimens augmented by experimental animal data, supports our hypothesis that the neoangiogenesis associated with reactive astrogliosis is correlated to increased reactive astrocytosis and associated VEGF expression.
PLOS ONE | 2014
Bodour Salhia; Jeff Kiefer; Julianna T.D. Ross; Raghu Metapally; Rae Anne Martinez; Kyle N. Johnson; Danielle M. DiPerna; Kimberly M. Paquette; Sungwon Jung; Sara Nasser; Garrick Wallstrom; Waibhav Tembe; Angela Baker; John D. Carpten; Jim Resau; Timothy C. Ryken; Zita A. Sibenaller; Emanuel F. Petricoin; Lance A. Liotta; Ramesh K. Ramanathan; Michael E. Berens; Nhan L. Tran
The brain is a common site of metastatic disease in patients with breast cancer, which has few therapeutic options and dismal outcomes. The purpose of our study was to identify common and rare events that underlie breast cancer brain metastasis. We performed deep genomic profiling, which integrated gene copy number, gene expression and DNA methylation datasets on a collection of breast brain metastases. We identified frequent large chromosomal gains in 1q, 5p, 8q, 11q, and 20q and frequent broad-level deletions involving 8p, 17p, 21p and Xq. Frequently amplified and overexpressed genes included ATAD2, BRAF, DERL1, DNMTRB and NEK2A. The ATM, CRYAB and HSPB2 genes were commonly deleted and underexpressed. Knowledge mining revealed enrichment in cell cycle and G2/M transition pathways, which contained AURKA, AURKB and FOXM1. Using the PAM50 breast cancer intrinsic classifier, Luminal B, Her2+/ER negative, and basal-like tumors were identified as the most commonly represented breast cancer subtypes in our brain metastasis cohort. While overall methylation levels were increased in breast cancer brain metastasis, basal-like brain metastases were associated with significantly lower levels of methylation. Integrating DNA methylation data with gene expression revealed defects in cell migration and adhesion due to hypermethylation and downregulation of PENK, EDN3, and ITGAM. Hypomethylation and upregulation of KRT8 likely affects adhesion and permeability. Genomic and epigenomic profiling of breast brain metastasis has provided insight into the somatic events underlying this disease, which have potential in forming the basis of future therapeutic strategies.
BMC Women's Health | 2011
Bodour Salhia; Coya Tapia; Elia Ishak; Salwa Gaber; Bree Berghuis; Khateeb Hyder Hussain; Rachelle A. DuQuette; James H. Resau; John D. Carpten
BackgroundPrognostic markers and molecular breast cancer subtypes reflect underlying biological tumor behavior and are important for patient management. Compared to Western countries, women in North Africa are less likely to be prognosticated and treated based on well-characterized markers such as the estrogen receptor (ER), progesterone receptor (PR) and Her2. We conducted this study to determine the prevalence of breast cancer molecular subtypes in the North African country of Egypt as a measure of underlying biological characteristics driving tumor manifestations.MethodsTo determine molecular subtypes we characterized over 200 tumor specimens obtained from Egypt by performing ER, PR, Her2, CK5/6, EGFR and Ki67 immunohistochemistry.ResultsOur study demonstrated that the Luminal A subtype, associated with favorable prognosis, was found in nearly 45% of cases examined. However, the basal-like subtype, associated with poor prognosis, was found in 11% of cases. These findings are in sharp contrast to other parts of Africa in which the basal-like subtype is over-represented.ConclusionsEgyptians appear to have favorable underlying biology, albeit having advanced disease at diagnosis. These data suggest that Egyptians would largely profit from early detection of their disease. Intervention at the public health level, including education on the benefits of early detection is necessary and would likely have tremendous impact on breast cancer outcome in Egypt.