Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bofu Yu is active.

Publication


Featured researches published by Bofu Yu.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2013

Panta Rhei-Everything Flows: Change in hydrology and society-The IAHS Scientific Decade 2013-2022

Alberto Montanari; G. Young; Hubert H. G. Savenije; Denis A. Hughes; Thorsten Wagener; L. Ren; Demetris Koutsoyiannis; Christophe Cudennec; Elena Toth; Salvatore Grimaldi; Günter Blöschl; Murugesu Sivapalan; Keith Beven; Hoshin V. Gupta; Matthew R. Hipsey; Bettina Schaefli; Berit Arheimer; Eva Boegh; Stanislaus J. Schymanski; G. Di Baldassarre; Bofu Yu; Pierre Hubert; Y. Huang; Andreas Schumann; D.A. Post; V. Srinivasan; Ciaran J. Harman; Sally E. Thompson; M. Rogger; Alberto Viglione

Abstract The new Scientific Decade 2013–2022 of IAHS, entitled “Panta Rhei—Everything Flows”, is dedicated to research activities on change in hydrology and society. The purpose of Panta Rhei is to reach an improved interpretation of the processes governing the water cycle by focusing on their changing dynamics in connection with rapidly changing human systems. The practical aim is to improve our capability to make predictions of water resources dynamics to support sustainable societal development in a changing environment. The concept implies a focus on hydrological systems as a changing interface between environment and society, whose dynamics are essential to determine water security, human safety and development, and to set priorities for environmental management. The Scientific Decade 2013–2022 will devise innovative theoretical blueprints for the representation of processes including change and will focus on advanced monitoring and data analysis techniques. Interdisciplinarity will be sought by increased efforts to connect with the socio-economic sciences and geosciences in general. This paper presents a summary of the Science Plan of Panta Rhei, its targets, research questions and expected outcomes. Editor Z.W. Kundzewicz Citation Montanari, A., Young, G., Savenije, H.H.G., Hughes, D., Wagener, T., Ren, L.L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S.J., Di Baldassarre, G., Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., and Belyaev, V., 2013. “Panta Rhei—Everything Flows”: Change in hydrology and society—The IAHS Scientific Decade 2013–2022. Hydrological Sciences Journal. 58 (6) 1256–1275.


Marine and Freshwater Research | 2002

Sediment yield and impacts from river catchments to the Great Barrier Reef lagoon

David Neil; Alan R. Orpin; Peter V. Ridd; Bofu Yu

Land use intensification is estimated to result in an overall increase in sediment delivery to the Great Barrier Reef lagoon by a factor of approximately four. Modelling suggests that, following land use intensification, croplands cause the greatest increase of sediment yield and sediment concentration, whereas erosion of grazing land is the main contemporary source of sediments, primarily owing to the large spatial extent of this land use. The spatial pattern of sediment yield to the coast after land use intensification is strongly correlated with the pattern under natural conditions, although the greatest increase is estimated to have occurred in the wet-dry catchments. Sediment transport and resuspension processes have led to the development of a strongly sediment-partitioned shelf, with modern mud-rich sediments almost exclusively restricted to the inner and inner-middle shelf, northward-facing embayments and in the lee of headlands. Elevated sediment concentrations increase the potential transport rates of nutrients and other pollutants. Whether increased sediment supply to the coastal zone has impacted on reefs remains a point of contention. More sediment load data need to be collected and analysed in order to make detailed estimates of catchment yields and establish the possible sediment impact on the Great Barrier Reef.


Transactions of the ASABE | 1996

A Robust Estimate of the R-Factor for the Universal Soil Loss Equation

Bofu Yu; C.J. Rosewell

Mean monthly precipitation data from 29 sites in southeastern Australia were used to estimate the R-factor in the Universal Soil Loss Equation. The relationship between mean annual precipitation and the R-factor is very good (r2 = 0.91) and shows a remarkable similarity to that for the continental United States, suggesting a universal nature of this relationship for possible worldwide application. Use of the Modified Fournier Index does not significantly improve the R-factor estimation relation.


Soil Research | 1998

Rainfall erosivity and its estimation for Australia's tropics

Bofu Yu

Pluviograph data at 6-min intervals for 41 sites in the tropics of Australia were used to compute the rainfall and runoff factor (R-factor) for the Revised Universal Soil Loss Equation (RUSLE), and a daily rainfall erosivity model was validated for these tropical sites. Mean annual rainfall varies from about 300 mm at Jervois (015602) to about 4000 at Tully (032042). The corresponding R-factor ranges from 1080 to 33500 MJ·mm/(ha ·h·year). For these tropical sites, both rainfall and rainfall erosivity are highly seasonal with a single peak in February mostly. Summer months (November–April) typically contribute about 80% of annual rainfall and about 90% of the R-factor. The daily erosivity model performed better for the tropical sites with a marked wet season in summer in comparison to model performance in temperate regions of Australia where peak rainfall and peak rainfall erosivity may occur in different seasons. A set of regional parameters depending on seasonal rainfall was developed so that the R-factor and its seasonal distribution can be estimated for sites without pluviograph data. The prediction error using the regional parameter values is about 20% for the R-factor and 1% for its monthly distribution for these tropical sites.


Transactions of the ASABE | 1997

PLOT-SCALE RAINFALL-RUNOFF CHARACTERISTICS AND MODELING AT SIX SITES IN AUSTRALIA AND SOUTHEAST ASIA

Bofu Yu; Calvin Wyatt Rose; K.J. Coughlan; B. Fentie

During major runoff events when most soil loss occurs, runoff is likely to dominate the rainfall-driven erosion processes. Thus accurate estimation of the runoff rate is critical to soil loss predictions. At plot scale, the Green-Ampt infiltration model is commonly assumed to be able to describe the temporal variation of the infiltration rate over a storm event. Field measurements of both rainfall intensity and runoff rate at 1-min intervals at six sites in the tropical and subtropical regions of Australia and Southeast Asia, however, strongly suggest that the apparent infiltration rate is closely related to the rainfall intensity and it is essentially independent of the cumulative infiltration amount, features not accord with the Green-Ampt infiltration equation. Furthermore, the storage effect and runoff rate attenuation are not negligible at the plot scale. With an initial infiltration amount to determine when runoff begins, an exponential distribution to describe the spatial variation in the maximum infiltration rate and a linear storage formulation to model the lag between runoff and rainfall, we were able to develop a satisfactory three-parameter model for the runoff rate at 1-min intervals within a storm event.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 1999

A comparative study of rainfall erosivity estimation for southern Italy and southeastern Australia

Vito Ferro; Paolo Porto; Bofu Yu

Abstract In this paper, using Sicilian and Australian rainfall intensity data, a comparison between different estimators (modified Fournier index F, FF index) of the rainfall erosivity factor in the USLE was made. The relationship between the modified Fournier index and the mean annual rainfall, P, was theoretically derived. The K constant, linking the FF index and P, and its cumulative distribution function (CDF) were used to establish hydrological similitude among different geographical regions of southern Italy and southeastern Australia. To predict the erosion risk for an event of given average recurrence interval, the probability distribution of the annual value F a.j of the Arnoldus index was studied. In order to establish the theoretical CDF to use as a regional parent distribution, the descriptive ability of LN2 and EV1 distributions was studied by both an at-site analysis and a hierarchical regional procedure. The analysis showed that for each sub-region of southern Italy and southeastern Austral...


Soil Research | 1996

An Assessment of a Daily Rainfall Erosivity Model for NSW

Bofu Yu; C.J. Rosewell

A rainfall erosivity model using daily rainfall amounts to estimate rainfall erosivity was tested for 29 sites in New South Wales to see whether such a model could adequately describe the temporal variation and seasonal distribution of rainfall erosivity. The coefficient of determination varied from 0.57 to 0.97 and the average discrepancy between actual and estimated seasonal distribution was no more than 3%. A set of parameter values for sites without pluviograph data was recommended for New South Wales. With this set of recommended parameter values, the percentage of total variance explained was decreased to 44%-89% for the 29 sites. Large errors, however, can occur when estimating extreme storm erosivity with large return periods. The daily erosivity model could be used for determining the seasonal distribution of rainfall erosivity or for simulating changes to rainfall erosivity as part of climate change impacts assessment.


Journal of Hydrology | 2003

Sediment deposition from flow at low gradients into a buffer strip - a critical test of re-entrainment theory

Calvin Wyatt Rose; Bofu Yu; W. L. Hogarth; Augustine Okom; Hossein Ghadiri

The spatial and size distribution of sediment deposited from short periods of overland flow due to the effect of a simulated grass buffer strip was measured for low slopes of 1.6, 3.4 and 5.1%. These data were analysed so as to critically evaluate two alternative models of the process of re-entrainment of recently deposited sediment. A model of re-entrainment, previously thought to be appropriate only for a steady-state or equilibrium situation, was found to give better agreement with experiments than did a model previously used in the literature on this subject.


Soil Research | 1997

Toward a Framework for Runoff and Soil Loss Prediction using GUEST Technology

Bofu Yu; Calvin Wyatt Rose; Cyril A. A. Ciesiolka; K.J. Coughlan; B. Fentie

In recent years, a number of physically based models have been developed for soil loss predictions. GUEST is one such model based on fundamental physical principles and the current understanding of water erosion processes. GUEST is mainly used to determine a soil erodibility parameter. To apply the model in a predictive mode, the model is simplified in a physically meaningful manner for flow-driven erosion processes, and 2 essential hydrologic variables are identified, namely total runoff amount and an effective runoff rate. These variables are required to determine soil loss for individual runoff events. A simple water balance model was developed and used to predict runoff amount from rainfall amount. The efficiency of this runoff amount model in prediction was over 90% using field data. A 1-parameter regression model (r2 ~ 0·9) for the effective runoff rate was also established which uses peak rainfall intensity in addition to rainfall and runoff amounts. The prediction of peak rainfall intensity for a given rainfall amount and storm type was also sought. The field data were from Goomboorian, near Gympie, in south-east Queensland and these data were used to test and validate both models. Results overall are satisfactory and the approach adopted is promising. A framework for soil loss prediction is established within which individual parts can be further refined and improved.


Soil Research | 2008

Comparing the effects of continuous and time-controlled grazing systems on soil characteristics in Southeast Queensland

Gholamreza Sanjari; Hossein Ghadiri; Cyril A. A. Ciesiolka; Bofu Yu

Grazing by livestock has a great influence on soil characteristics with major effects on soil carbon and nitrogen cycling in grazing lands. Grazing practices affect soil properties in different ways depending on the prescribed stocking rate and grazing periods. The new grazing system of short, intensive grazing followed by a long period of rest, referred to as time-controlled grazing (TC grazing), has become popular among many graziers in Australia and elsewhere. However, little research has been carried out on the impacts of this grazing system on the physical and chemical health of the soil. To address this issue, a comprehensive field study was carried out on a sheep-grazing property in the south-eastern region of Queensland, Australia, where the 2 grazing systems of continuous and TC grazing were compared. Results over the period 2001–2006 showed an increase in soil organic carbon and nitrogen in the areas with favourable soil condition compared with continuous grazing. There was also an increase in ground-litter accumulation over time and no compaction in TC grazing. Nitrate and extractable P concentrations were reduced by increased grass growth under TC grazing, which in turn decreased the contamination potential for downstream water bodies. This reduction was much more pronounced on a historical sheep aggregation camp, where a large amount of faecal material had been deposited prior to conversion to TC grazing. The smaller size of the paddocks, along with the long rest period provided by TC grazing in this area, are recognised to be the major contributors to both physical and chemical recovery of the soil after each grazing operation.

Collaboration


Dive into the Bofu Yu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cyril A. A. Ciesiolka

Queensland Department of Natural Resources and Mines

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Neil

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge