Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bogdan A. Stoica is active.

Publication


Featured researches published by Bogdan A. Stoica.


Journal of Biological Chemistry | 1999

Role of Poly(ADP-ribose) Polymerase (PARP) Cleavage in Apoptosis CASPASE 3-RESISTANT PARP MUTANT INCREASES RATES OF APOPTOSIS IN TRANSFECTED CELLS

A. Hamid Boulares; Alexander G. Yakovlev; Vessela Ivanova; Bogdan A. Stoica; Geping Wang; Sudha Iyer; Mark E. Smulson

An early transient burst of poly(ADP-ribosyl)ation of nuclear proteins was recently shown to be required for apoptosis to proceed in various cell lines (Simbulan-Rosenthal, C., Rosenthal, D., Iyer, S., Boulares, H., and Smulson, M. (1998) J. Biol. Chem. 273, 13703–13712) followed by cleavage of poly(ADP-ribose) polymerase (PARP), catalyzed by caspase-3. This inactivation of PARP has been proposed to prevent depletion of NAD (a PARP substrate) and ATP, which are thought to be required for later events in apoptosis. The role of PARP cleavage in apoptosis has now been investigated in human osteosarcoma cells and PARP −/− fibroblasts stably transfected with a vector encoding a caspase-3-resistant PARP mutant. Expression of this mutant PARP increased the rate of staurosporine and tumor necrosis factor-α-induced apoptosis, at least in part by reducing the time interval required for the onset of caspase-3 activation and internucleosomal DNA fragmentation, as well as the generation of 50-kilobase pair DNA breaks, thought to be associated with early chromatin unfolding. Overexpression of wild-type PARP in osteosarcoma cells also accelerated the apoptotic process, although not to the same extent as that apparent in cells expressing the mutant PARP. These effects of the mutant and wild-type enzymes might be due to the early and transient poly(ADP-ribose) synthesis in response to DNA breaks, and the accompanying depletion of NAD apparent in the transfected cells. The accelerated NAD depletion did not seem to interfere with the later stages of apoptosis. These results indicate that PARP activation and subsequent cleavage have active and complex roles in apoptosis.


Neurotherapeutics | 2010

Cell Death Mechanisms and Modulation in Traumatic Brain Injury

Bogdan A. Stoica; Alan I. Faden

SummaryCell death after traumatic brain injury (TBI) is a major cause of neurological deficits and mortality. Understanding the mechanisms of delayed post-traumatic cell loss may lead to new therapies that improve outcome. Although TBI induces changes in multiple cell types, mechanisms of neuronal cell death have been the predominant focus. Recent work has emphasized the diversity of neuronal death phenotypes, which have generally been defined by either morphological or molecular changes. This diversity has led to confusing and at times contradictory nomenclature. Here we review the historical basis of proposed definitions of neuronal cell death, with the goal of clarifying critical research questions and implications for therapy in TBI. We believe that both morphological and molecular features must be used to clarify post-traumatic cell death and related therapeutic targets. Further, we underscore that the most effective neuroprotective strategies will need to target multiple pathways to reflect the regional and temporal changes underlying diverse neuronal cell death phenotypes.


Molecular and Cellular Neuroscience | 2003

Ceramide-induced neuronal apoptosis is associated with dephosphorylation of Akt, BAD, FKHR, GSK-3β, and induction of the mitochondrial-dependent intrinsic caspase pathway

Bogdan A. Stoica; Vilen A. Movsesyan; Paul M. Lea; Alan I. Faden

Neuronal apoptosis has been implicated as an important mechanism of cell death in acute and chronic neurodegenerative disorders. Ceramide is a product of sphingolipid metabolism which induces neuronal apoptosis in culture, and ceramide levels increase in neurons during various conditions associated with cell death. In this study we investigate the mechanism of ceramide-induced apoptosis in primary cortical neuronal cells. We show that ceramide treatment initiates a cascade of biochemical alterations associated with cell death: earliest signal transduction changes involve Akt dephosphorylation and inactivation followed by dephosphorylation of proapoptotic regulators such as BAD (proapoptotic Bcl-2 family member), Forkhead family transcription factors, glycogen synthase kinase 3-beta, mitochondrial depolarization and permeabilization, release of cytochrome c into the cytosol, and caspase-3 activation. Bongkrekic acid, an agent that inhibits mitochondrial depolarization, significantly reduces ceramide-induced cell death and correlated caspase-3 activation. Together, these data demonstrate the importance of the mitochondrial-dependent intrinsic pathway of caspase activation for ceramide-induced neuronal apoptosis.


Journal of Neuropathology and Experimental Neurology | 2014

Progressive Neurodegeneration After Experimental Brain Trauma: Association With Chronic Microglial Activation

David J. Loane; Alok Kumar; Bogdan A. Stoica; Rainier Cabatbat; Alan I. Faden

Recent clinical studies indicate that traumatic brain injury (TBI) produces chronic and progressive neurodegenerative changes leading to late neurologic dysfunction, but little is known about the mechanisms underlying such changes. Microglial-mediated neuroinflammationis an important secondary injury mechanism after TBI. In human studies, microglial activation has been found to persist for many years after the initial brain trauma, particularly after moderate to severe TBI. In the present study, adult C57Bl/6 mice were subjected to single moderate-level controlled cortical impact and were followed up by longitudinal T2-weighted magnetic resonance imaging in combination with stereologic histologic assessment of lesion volume expansion, neuronal loss, and microglial activation for up to 1 year after TBI. Persistent microglial activation was observed in the injured cortex through 1 year after injury and was associated with progressive lesion expansion, hippocampal neurodegeneration, and loss of myelin. Notably, highly activated microglia that expressed major histocompatibility complex class II (CR3/43), CD68, and NADPH oxidase (NOX2) were detected at the margins of the expanding lesion at 1 year after injury; biochemical markers of neuroinflammation and oxidative stress were significantly elevated at this time point. These data support emerging clinical TBI findings and provide a mechanistic link between TBI-induced chronic microglial activation and progressive neurodegeneration.


Neurobiology of Aging | 2013

Traumatic brain injury in aged animals increases lesion size and chronically alters microglial/macrophage classical and alternative activation states

Alok Kumar; Bogdan A. Stoica; Boris Sabirzhanov; Mark P. Burns; Alan I. Faden; David J. Loane

Traumatic brain injury (TBI) causes chronic microglial activation that contributes to subsequent neurodegeneration, with clinical outcomes declining as a function of aging. Microglia/macrophages (MG/Mɸ) have multiple phenotypes, including a classically activated, proinflammatory (M1) state that might contribute to neurotoxicity, and an alternatively activated (M2) state that might promote repair. In this study we used gene expression, immunohistochemical, and stereological analyses to show that TBI in aged versus young mice caused larger lesions associated with an M1/M2 balance switch and increased numbers of reactive (bushy and hypertrophic) MG/Mɸ in the cortex, hippocampus, and thalamus. Chitinase3-like 3 (Ym1), an M2 phenotype marker, displayed heterogeneous expression after TBI with amoeboid-like Ym1-positive MG/Mɸ at the contusion site and ramified Ym1-positive MG/Mɸ at distant sites; this distribution was age-related. Aged-injured mice also showed increased MG/Mɸ expression of major histocompatibility complex II and NADPH oxidase, and reduced antioxidant enzyme expression which was associated with lesion size and neurodegeneration. Thus, altered relative M1/M2 activation and an nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase)-mediated shift in redox state might contribute to worse outcomes observed in older TBI animals by creating a more proinflammatory M1 MG/Mɸ activation state.


Journal of Biological Chemistry | 2004

BOK and NOXA are essential mediators of p53-dependent apoptosis.

Alexander G. Yakovlev; Simone Di Giovanni; Geping Wang; Wenfan Liu; Bogdan A. Stoica; Alan I. Faden

Cellular stress leads to DNA damage and activation of the intrinsic apoptotic pathway in which translocation of mitochondrial cytochrome c to the cytosol plays a critical role. Previous studies have suggested alternative mechanisms responsible for this process. We examined initiation mechanisms of the intrinsic apoptotic pathway using human neuroblastoma and breast cancer cells. Results indicated that translocation of cytochrome c does not require prior activation of caspases but rather depends on activation of specific BCL-2 family members, depending upon the type of death signal. Thus, DNA damage-induced apoptosis requires new protein synthesis, accumulation of p53 tumor suppressor protein, and p53-dependent induction of BOK and NOXA genes, while a role for BAX in this pathway is not essential. In contrast, apoptosis induced by staurosporine does not require protein synthesis but is characterized by translocation of BAX. Based on these findings, we propose a model of the intrinsic apoptotic cascade induced by DNA damage where proapoptotic BOK substitutes for a function of BAX.


Cell Cycle | 2005

Role of the cell cycle in the pathobiology of central nervous system trauma

Ibolja Cernak; Bogdan A. Stoica; Kimberly R. Byrnes; Simone Di Giovanni; Alan I. Faden

Up-regulation of cell cycle proteins occurs in both mitotic and post-mitotic neural cells after central nervous system (CNS) injury in adult animals. In mitotic cells, such as astroglia and microglia, they induce proliferation, whereas in post-mitotic cells such as neurons they initiate caspase-related apoptosis. We recently reported that early central administration of the cell cycle inhibitor flavopiridol after experimental traumatic brain injury (TBI) significantly reduced lesion volume, scar formation and neuronal cell death, while promoting near complete behavioral recovery. Here we show that in primary neuronal or astrocyte cultures structurally different cell cycle inhibitors (flavopiridol, roscovitine, and olomoucine) significantly reduce up-regulation of cell cycle proteins, attenuate neuronal cell death induced by etoposide, and decrease astrocyte proliferation. Flavopiridol, in a concentration dependent manner, also attenuates proliferation/activation of microglia. In addition, we demonstrate that central administration of flavopiridol improves functional outcome in dose-dependent manner after fluid percussion induced brain injury in rats. Moreover, delayed systemic administration of flavopiridol significantly reduces brain lesion volume and edema development after TBI. These data provide further support for the therapeutic potential of cell cycle inhibitors for the treatment of clinical CNS injury and that protective mechanisms likely include reduction of neuronal cell death, inhibition of glial proliferation and attenuation of microglial activation.


Journal of Cerebral Blood Flow and Metabolism | 2014

Repeated mild traumatic brain injury causes chronic neuroinflammation, changes in hippocampal synaptic plasticity, and associated cognitive deficits

Stephanie Aungst; Shruti V. Kabadi; Scott M. Thompson; Bogdan A. Stoica; Alan I. Faden

Repeated mild traumatic brain injury (mTBI) can cause sustained cognitive and psychiatric changes, as well as neurodegeneration, but the underlying mechanisms remain unclear. We examined histologic, neurophysiological, and cognitive changes after single or repeated (three injuries) mTBI using the rat lateral fluid percussion (LFP) model. Repeated mTBI caused substantial neuronal cell loss and significantly increased numbers of activated microglia in both ipsilateral and contralateral hippocampus on post-injury day (PID) 28. Long-term potentiation (LTP) could not be induced on PID 28 after repeated mTBI in ex vivo hippocampal slices from either hemisphere. N-Methyl-D-aspartate (NMDA) receptor-mediated responses were significantly attenuated after repeated mTBI, with no significant changes in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated responses. Long-term potentiation was elicited in slices after single mTBI, with potentiation significantly increased in ipsilateral versus contralateral hippocampus. After repeated mTBI, rats displayed cognitive impairments in the Morris water maze (MWM) and novel object recognition (NOR) tests. Thus, repeated mTBI causes deficits in the hippocampal function and changes in excitatory synaptic neurotransmission, which are associated with chronic neuroinflammation and neurodegeneration.


Glia | 2009

Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity

Kimberly R. Byrnes; Bogdan A. Stoica; David J. Loane; Angela Riccio; Margaret I. Davis; Alan I. Faden

The Group I metabotropic glutamate receptor 5 (mGluR5) can modulate addiction, pain, and neuronal cell death. Expression of some mGluRs, such as Group II and III mGluRs, has been reported in microglia and may affect their activation. However, the expression and role of mGluR5 in microglia is unclear. Using immunocytochemistry and Western blot, we demonstrate that mGluR5 protein is expressed in primary microglial cultures. Activation of mGluR5 using the selective agonist (RS)‐2‐chloro‐5‐hydroxyphenylglycine (CHPG) significantly reduces microglial activation in response to lipopolysaccharide, as indicated by a reduction in nitric oxide, reactive oxygen species, and TNFα production. Microglial induced neurotoxicity is also markedly reduced by CHPG treatment. The anti‐inflammatory effects of CHPG are not observed in microglial cultures from mGluR5 knockout mice and are blocked by selective mGluR5 antagonists, suggesting that these actions are mediated by the mGluR5 receptor. Anti‐inflammatory actions of mGluR5 activation are attenuated by phospholipase C and protein kinase C inhibitors, as well as by calcium chelators, suggesting that the mGluR5 activation in microglia involves the Gαq‐protein signal transduction pathway. These data indicate that microglial mGluR5 may represent a novel target for modulating neuroinflammation, an important component of both acute and chronic neurodegenerative disorders.


Journal of Cerebral Blood Flow and Metabolism | 2004

Caspase Inhibitor z-DEVD-fmk Attenuates Calpain and Necrotic Cell Death in Vitro and after Traumatic Brain Injury:

Susan M. Knoblach; Daniel A. Alroy; Maria Nikolaeva; Ibolja Cernak; Bogdan A. Stoica; Alan I. Faden

In studies designed to evaluate the therapeutic window for treatment of traumatic brain injury, the caspase 3 inhibitor z-DEVD-fmk improved neurologic function and reduced lesion volumes when administered at 1 but not at 4, 8, or 24 hours after injury. Moreover, neither caspase 3 nor PARP, a caspase 3 substrate, were cleaved in injured, untreated cortex from 1 to 72 hours after injury. Few cortical neurons expressed active caspase 3 or were TUNEL positive from 6 to 24 hours after injury, and TUNEL staining was primarily Type I (necrotic). Nissl staining revealed extensive neuronal necrosis in the injured cortex from 6 to 24 hours after impact. Considered together, these data suggested that z-DEVD-fmk may reduce neuronal necrosis, so we used an in vitro model of necrotic cell death induced by maitotoxin to test this further and explore the potential mechanism(s) involved. Z-DEVD-fmk (1 nM-100 μM) significantly attenuated maitotoxin induced neuronal cell death and markedly reduced expression of the 145 kD calpain-mediated α-spectrin breakdown product after maitotoxin injury. Neither the 120 kD caspase-mediated α-spectrin cleavage product nor cathepsin B were expressed after maitotoxin injury. In a cell free assay, z-DEVD-fmk reduced hydrolysis of casein by purified calpain I. Finally, z-DEVD-fmk reduced expression of the 145 kD calpain-mediated α-spectrin cleavage fragment after traumatic brain injury in vivo. These data suggest that neuroprotection by z-DEVD-fmk may, in part, reflect inhibition of calpain-related necrotic cell death.

Collaboration


Dive into the Bogdan A. Stoica's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Loane

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kimberly R. Byrnes

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junfang Wu

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zaorui Zhao

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vilen A. Movsesyan

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge