Bogusz Kulawiak
Nencki Institute of Experimental Biology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bogusz Kulawiak.
Experimental Neurology | 2008
Bogusz Kulawiak; Alexei P. Kudin; Adam Szewczyk; Wolfram S. Kunz
To delineate the potential mechanism of neuroprotective effects of potassium channel openers we have investigated, how Ca(2+)-activated large conductance potassium channel (BK(Ca) channel) openers influence the production of reactive oxygen species (ROS) by rat brain mitochondria, since mitochondrial generation of ROS is known to have a crucial influence on neuronal survival. We studied the effects of BK(Ca) channel openers CGS 7184 and NS 1619 on hydrogen peroxide production rate of isolated rat brain mitochondria. In K(+)-containing media 3 microM of both channel openers reduced the hydrogen peroxide production rates by approximately 20%. This effect was not observed in Na(+)-containing media. This potassium-dependent partial inhibition of hydrogen peroxide production was found to be sensitive to the selective blockers of BK(Ca) channel iberiotoxin and charybdotoxin applied in nanomolar concentrations. Taken together, our data are compatible with the viewpoint that the opening of a Ca(2+)-activated large conductance potassium channel being localised in the inner membrane of brain mitochondria inhibits ROS production by respiratory chain complex I. This finding is suggested to explain the beneficial effects of BK potassium channel openers on neuronal survival.
International Journal of Molecular Sciences | 2009
Jolanta Skalska; Piotr Bednarczyk; Marta Piwońska; Bogusz Kulawiak; Grzegorz M. Wilczynski; Krzysztof Dołowy; Alexei P. Kudin; Wolfram S. Kunz; Adam Szewczyk
The mitochondrial response to changes of cytosolic calcium concentration has a strong impact on neuronal cell metabolism and viability. We observed that Ca2+ additions to isolated rat brain mitochondria induced in potassium ion containing media a mitochondrial membrane potential depolarization and an accompanying increase of mitochondrial respiration. These Ca2+ effects can be blocked by iberiotoxin and charybdotoxin, well known inhibitors of large conductance potassium channel (BKCa channel). Furthermore, NS1619 – a BKCa channel opener – induced potassium ion–specific effects on brain mitochondria similar to those induced by Ca2+. These findings suggest the presence of a calcium-activated, large conductance potassium channel (sensitive to charybdotoxin and NS1619), which was confirmed by reconstitution of the mitochondrial inner membrane into planar lipid bilayers. The conductance of the reconstituted channel was 265 pS under gradient (50/450 mM KCl) conditions. Its reversal potential was equal to 50 mV, which proved that the examined channel was cation-selective. We also observed immunoreactivity of anti-β4 subunit (of the BKCa channel) antibodies with ~26 kDa proteins of rat brain mitochondria. Immunohistochemical analysis confirmed the predominant occurrence of β4 subunit in neuronal mitochondria. We hypothesize that the mitochondrial BKCa channel represents a calcium sensor, which can contribute to neuronal signal transduction and survival.
Mitochondrion | 2012
Bogusz Kulawiak; Adam Szewczyk
In the present study, we show that the large conductance calcium-activated potassium channel (BK(Ca) channel) inhibitor paxilline protects neuronal cells against glutamate-induced cell death. In our studies, we used HT22 mouse hippocampal cells as an experimental model and observed that the effect of paxilline was dose-dependent. We also found that other inhibitors of BK(Ca) channels, iberiotoxin and charybdotoxin, were not cytoprotective. Paxillinol, which is a structural analog of paxilline but does not inhibit BK(Ca) channel, also protected HT22 cells against glutamate-induced toxicity. These data suggest that the observed cytoprotection was not related to BK(Ca) channel inhibition by paxilline. In addition, paxilline neither restored glutathione levels nor reduced the amount of reactive oxygen species upon glutamate treatment. Our results suggest that paxilline protects neuronal HT22 cells against glutamate-induced cell death independently of BK(Ca) channel activity and oxidative stress induced by glutamate treatment.
Cellular Physiology and Biochemistry | 2010
Dominika Malinska; Bogusz Kulawiak; Antoni Wrzosek; Wolfram S. Kunz; Adam Szewczyk
BMS-191095 is an opener of the mitochondrial ATP-regulated potassium channel, which has been shown to provide cytoprotection in models of ischemia-reperfusion induced injury in various tissues. This study aimed at checking the protective action of BMS-191095 under the conditions of oxidative stress or disruption of intracellular calcium homeostasis. Methods: The cytoprotective potential of BMS-191095 was tested in C2C12 myoblasts injured by treatment with H2O2 or calcium ionophore A23187. The influence of the opener on intracellular calcium levels, calpain activity and respiration rates were determined. Results: BMS-191095 protected myoblasts from calcium ionophore A23187-induced injury, but not from H H2O2-induced injury. A23187-mediated cell damage was also prevented by calpain inhibitor PD 150606. A23187 administration led to a transient increase in cytosolic calcium levels, concomitant activation of calpains and a decrease in state 3 respiration rates, indicating mitochondrial dysfunction. Co-administration of BMS-191095 diminished calpain activation in A23187-treated cells but did not prevent mitochondrial damage. In the presence of BMS-191095, restoration of cytosolic calcium concentrations to basal levels after A23187 treatment was considerably faster which may underly the reduced activation of calpains. Conclusion: The BMS-191095-mediated cytoprotection observed in C2C12 myoblasts results probably from modulation of intracellular calcium transients leading to prevention of calpain activation.
Biochemical Journal | 2016
Anna Kicinska; Bartlomiej Augustynek; Bogusz Kulawiak; Wieslawa Jarmuszkiewicz; Adam Szewczyk; Piotr Bednarczyk
Potassium channels have been found in the inner mitochondrial membrane of various cells. These channels regulate the mitochondrial membrane potential, respiration and production of reactive oxygen species. In the present study, we identified the activity of a mitochondrial large-conductance Ca2+-regulated potassium channel (mitoBKCa channel) in mitoplasts isolated from a primary human dermal fibroblast cell line. A potassium selective current was recorded with a mean conductance of 280 ± 2 pS in a symmetrical 150 mM KCl solution. The mitoBKCa channel was activated by the Ca2+ and by potassium channel opener NS1619. The channel activity was irreversibly inhibited by paxilline, a selective inhibitor of the BKCa channels. In isolated fibroblast mitochondria NS1619 depolarized the mitochondrial membrane potential, stimulated nonphosphorylating respiration and decreased superoxide formation. Additionally, the α- and β-subunits (predominantly the β3-form) of the BKCa channels were identified in fibroblast mitochondria. Our findings indicate, for the first time, the presence of a large-conductance Ca2+-regulated potassium channel in the inner mitochondrial membrane of human dermal fibroblasts.
Biochimica et Biophysica Acta | 2018
Piotr Bednarczyk; Anna Kicinska; Michal Laskowski; Bogusz Kulawiak; Rafal Kampa; Agnieszka Walewska; Milena Krajewska; Wieslawa Jarmuszkiewicz; Adam Szewczyk
Mitochondrial ATP-regulated potassium channels are present in the inner membrane of the mitochondria of various cells. In the present study, we show for the first time mitochondrial ATP-regulated potassium channels in human dermal fibroblast cells. Using the patch-clamp technique on the inner mitochondrial membrane of fibroblasts, we detected a potassium channel with a mean conductance equal to 100 pS in symmetric 150 mM KCl. The activity of this channel was inhibited by a complex of ATP/Mg2+ and activated by potassium channel openers such as diazoxide or BMS 191095. Channel activity was inhibited by antidiabetic sulfonylurea glibenclamide and 5-hydroxydecanoic acid. The influence of substances modulating ATP-regulated potassium channel activity on oxygen consumption and membrane potential of isolated fibroblast mitochondria was also studied. Additionally, the potassium channel opener diazoxide lowered the amount of superoxide formed in isolated fibroblast mitochondria. Using reverse transcriptase-PCR, we found an mRNA transcript for the KCNJ1(ROMK) channel. The presence of ROMK protein was observed in the inner mitochondrial membrane fraction. Moreover, colocalization of the ROMK protein and a mitochondrial marker in the mitochondria of fibroblast cells was shown by immunofluorescence. In summary, the ATP-regulated mitochondrial potassium channel in a dermal fibroblast cell line have been identified.
International Journal of Molecular Sciences | 2018
Bartlomiej Augustynek; Piotr Koprowski; Daria Rotko; Wolfram S. Kunz; Adam Szewczyk; Bogusz Kulawiak
Potassium channel openers (KCOs) have been shown to play a role in cytoprotection through the activation of mitochondrial potassium channels. Recently, in several reports, a number of data has been described as off-target actions for KCOs. In the present study, we investigated the effects of BKCa channel openers CGS7181, CGS7184, NS1619, and NS004 in neuronal cells. For the purpose of this research, we used a rat brain, the mouse hippocampal HT22 cells, and the human astrocytoma U-87 MG cell line. We showed that CGS7184 activated the mitochondrial BKCa (mitoBKCa) channel in single-channel recordings performed on astrocytoma mitoplasts. Moreover, when applied to the rat brain homogenate or isolated rat brain mitochondria, CGS7184 increased the oxygen consumption rate, and can thus be considered a potentially cytoprotective agent. However, experiments on intact neuronal HT22 cells revealed that both CGS7181 and CGS7184 induced HT22 cell death in a concentration- and time-dependent manner. By contrast, we did not observe cell death when NS1619 or NS004 was applied. CGS7184 toxicity was not abolished by BKCa channel inhibitors, suggesting that the observed effects were independent of a BKCa-type channel activity. CGS7184 treatment resulted in an increase of cytoplasmic Ca2+ concentration that likely involved efflux from internal calcium stores and the activation of calpains (calcium-dependent proteases). The cytotoxic effect of the channel opener was partially reversed by a calpain inhibitor. Our data show that KCOs under study not only activate mitoBKCa channels from brain tissue, but also induce cell death when used in cellular models.
Biochimica et Biophysica Acta | 2018
Agnieszka Walewska; Bogusz Kulawiak; Adam Szewczyk; Piotr Koprowski
Potassium channels have been discovered in the inner mitochondrial membrane of various cells. These channels can regulate the mitochondrial membrane potential, the matrix volume, respiration and reactive species generation. Therefore, it is believed that their activation is cytoprotective in various tissues. In our study, the single-channel activity of a large-conductance calcium-activated potassium channel (mitoBKCa) was measured by the patch-clamp technique on mitoplasts derived from mitochondria isolated from human glioma U-87 MG cells. Here, we show for the first time that mechanical stimulation of mitoBKCa channels results in an increased probability of channel opening. However, the mechanosensitivity of mitoBKCa channels was variable with some channels exhibiting no mechanosensitivity. We detected the expression of mechanosensitive BKCa-STREX exon in U-87 MG cells and hypotesize, based on previous studies demonstrating the presence of multiple BKCa splice variants that variable mechanosensitivity of mitoBKCa could be the result of the presence of diverse BKCa isoforms in mitochondria of U-87 MG cells. Our findings indicate the possible involvement of the mitoBKCa channel in mitochondria activities in which changes in membrane tension and shape play a crucial role, such as fusion/fission and cristae remodeling.
Biochimica et Biophysica Acta | 2006
Adam Szewczyk; Jolanta Skalska; Marta Głąb; Bogusz Kulawiak; Dominika Malinska; Izabela Koszela-Piotrowska; Wolfram S. Kunz
Biochimica et Biophysica Acta | 2010
Dominika Malinska; Bogusz Kulawiak; Alexei P. Kudin; Richard Kovács; Christine Huchzermeyer; Oliver Kann; Adam Szewczyk; Wolfram S. Kunz