Bohdan Kříbek
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bohdan Kříbek.
International Journal of Coal Geology | 1998
Bohdan Kříbek; Mojmı́r Strnad; Zbyněk Boháček; Ivana Sýkorová; Jiří Čejka; Zdeněk Sobalík
Abstract Sediments of the upper part of the Sokolov Formation of the Sokolov Brown Coal Basin consist mostly of brown lacustrine clays and claystones enriched in organic matter (2–18% TOC). The lower portion of the stratigraphic profile is formed mostly by kaolinite–illite clays and claystones, while the montmorillonite content increases in the upper portion. The change in the lithology of sediments is caused by the gradual erosion of the weathering crust in the source areas of the clastic material. Inversion of the weathering profile during erosion is manifested geochemically in a decrease in the Al 2 O 3 /Na 2 O ratio and an increase in the SiO 2 /Al 2 O 3 , Na 2 O/K 2 O and K 2 O/TiO 2 ratios from the base to the top of the studied part of the Sokolov Formation. The amounts of trace elements (La, Ce, Nb, Zr, Cr, V, Sn) also decrease in the same direction. On the other hand, the amounts of Rb and Sr increase. The organic matter of the upper part of the Sokolov Formation consists primarily of Types I and II kerogen. Only near the base of the studied part of the formation, i.e., in the coal stringer, kerogen of Type III prevails. The extremely low degree of thermal maturity permits determination of the source of the organic matter and characterization of its accumulation environment. The organic material in the sediments is predominantly of algae origin. Relatively high amount of pentacyclic triterpanes of the hopane series indicates either the occurrence of cyanobacteria as primary producers or bacterial reworking during sedimentation and diagenesis. Organic matter accumulated under the conditions of a fresh-water lake or lake with slightly elevated salinity, in a dysoxic aqueous environment. The alternation of organic carbon-rich layers with layers low in organic matter is explained in terms of changes in the degree of dysoxia of the aqueous environment and a variation in the intensity of oxidation and mineralization of the organic material.
Mineralogical Magazine | 2010
Martina Vítková; Vojtech Ettler; Zdenek Johan; Bohdan Kříbek; Ondřej Šebek; Martin Mihaljevič
Abstract Pyrometallurgical slags from three Cu-Co smelters (Nkana, Mufulira, Chambishi) in the Copperbelt Province, Zambia, were studied from mineralogical and chemical points of view. The slags were enriched in metals and metalloids, mainly Cu (up to 35 wt.%), Co (up to 2.4 wt.%) and As (up to 3650 ppm). The following primary phases were observed in slags: Ca-Fe silicates (clinopyroxene, olivine) and leucite, oxides (spinel-series phases), ubiquitous silicate glass and sulphide/metallic droplets of various sizes. The presence of glass and skeletal/dendritic crystal shapes indicated rapid cooling of the slag melt. Copper and cobalt were found in low concentrations in the majority of silicates (olivine, clinopyroxene) and oxides, substituting for Fe in their structures (up to 7.15 wt.% CoO in olivine, 4.11 wt.% CuO in spinel). Similarly, up to 0.91 wt.% CoO and 6.90 wt.% CuO were observed in the interstitial glass. Nevertheless, the main carriers of these metals in the slags studied were Cu sulphides (digenite, chalcocite, bornite, chalcopyrite), Co-Fe sulphides (cobaltpentlandite), Co-bearing intermetallic phases ((Fe,Co)2As) and alloys. Weathering features corresponding to the presence of secondary metal-bearing phases, such as malachite (Cu2(CO3)(OH)2), brochantite (Cu4SO4(OH)6) and sphaerocobaltite (CoCO3), were observed on the slag surfaces. They indicate that the slags studied are reactive on contact with water/atmosphere and that their environmental stability and release of potentially harmful metals and metalloids must be evaluated further.
Science of The Total Environment | 2014
Vojtěch Ettler; Ladislav Konečný; Lucie Kovářová; Martin Mihaljevič; Ondřej Šebek; Bohdan Kříbek; Vladimír Majer; František Veselovský; Vít Penížek; Aleš Vaněk; Imasiku Nyambe
Six soil profiles located near Mufulira (Zambian Copperbelt) were studied to evaluate and compare the extent of environmental pollution of Cu-ore mining and smelting in both forested and grassland areas. The highest metal concentrations were detected in the uppermost soil layers with the following maxima: Co 45.8 mg kg(-1), Cu 8,980 mg kg(-1), Pb 41.6 mg kg(-1), and Zn 97.0 mg kg(-1). Numerous anthropogenic metal-bearing particles were detected in the most polluted soil layers. The spherical smelter-derived particles were mainly composed of covellite (CuS) and chalcocite (Cu2S), while the angular mining-derived particles were mostly composed of chalcopyrite (CuFeS2). Additionally, Fe-Cu oxide particles predominantly corresponding to tenorite (CuO) and delafossite (Cu(1+)Fe(3+)O2), along with hydrated Fe-oxides corresponding to secondary weathering products, were detected. In contrast to smelter-affected soils in temperate climates, where forest soils are significantly more enriched in metals than tilled soils due to high canopy interception, our data indicate a higher proportion of metal-bearing anthropogenic particles and higher metal concentrations in soils from unforested sites. This phenomenon is probably related to the more frequent and intense bushfires in forested areas, leading to the mobilization of pollutants contained in the biomass-rich surface soils back into the atmosphere.
Environmental Monitoring and Assessment | 2011
Ondra Sracek; Jan Filip; Martin Mihaljevič; Bohdan Kříbek; Vladimir Majer; František Veselovský
Behaviour of metals like Cu and Co was studied in nearly neutral (pH ≥ 6.4) mine drainage seepage in a stream downgradient of a tailing dam at Chambishi site in the Copperbelt of Zambia. They are attenuated by precipitation of ferruginous ochres that incorporate significant quantities of metals. Using chemical analysis, X-ray powder diffraction and Mössbauer spectroscopy, we show that the ochres are composed mostly of amorphous ferric hydroxide. Close to the seepage face, the total Fe content of ochres increases due to precipitation of amorphous ferric hydroxide, but total Fe in sediment decreases further downstream. The stream then flows through wetland (dambo) where the remaining fraction of metals is removed. During rainy periods, increased flow rate may result in re-suspension of ochres, increasing thus the mobility of metals. Major ions like sulphate are conservative at the start of the dry period (May), but gypsum may probably precipitate later at the end of the dry period. Sequential extractions of bulk sediments indicate that Mn behaves differently to Fe, with a trend of increasing Mn with distance from the tailing dam. There is much more Fe than Mn in residual (Aqua Regia) fraction, indicating that amorphous ferric hydroxides are transformed to more crystalline phases deeper in sediment. Environmental impact of mine drainage is relatively limited due to its neutral character.
Journal of Environmental Management | 2017
Alice Jarošíková; Vojtěch Ettler; Martin Mihaljevič; Bohdan Kříbek; Ben Mapani
The leaching behaviors of primary copper (Cu) slags originating from Ausmelt, reverbatory, and converter furnaces operating under a single technological process were compared to a residual slag tailing obtained by slag re-processing via flotation and metal recovery. The EN 12457-2 leaching test, used for assessment of the hazardous properties, was followed by the CEN/TS 14997 pH-static leaching test (pH range 3-12). Both leaching experiments were coupled with a mineralogical investigation of the primary and secondary phases as well as geochemical modeling. Metals (Cd, Cu, Pb, Zn) exhibit the highest leaching at low pH. Under acidic conditions (pH 3-6), Ausmelt slag and slag tailing exhibited higher metal leaching compared to other slag types. Very low leaching of metals (far below EU limits for non-hazardous waste) was observed at natural pH (7.9-9.0) for all the studied slag samples. In contrast, relatively high leaching of As was observed over the entire pH range, especially for Ausmelt slag (exceeding the EU limit for hazardous waste by 1.7×). However, geochemical modeling and scanning electron microscopy indicated that formation of stable Ca-Cu-Pb arsenates and the binding of As to newly formed Fe (oxyhydr)oxides play an important role in efficient As immobilization at the slag-water interface. In contrast, no controls were predicted for Sb, whose leaching was almost pH-independent. Nevertheless Sb leached concentrations at natural pH were below EU limit for hazardous waste. Re-processing of primary Cu slags for metal recovery, and subsequent co-disposal of the resulting slag tailing with dolomite-rich mine tailing and local laterite is suitable for stabilizing the remaining contaminants (except Sb) and limiting their leaching into the environment.
Science of The Total Environment | 2016
Vojtěch Ettler; Zdenek Johan; Bohdan Kříbek; František Veselovský; Martin Mihaljevič; Aleš Vaněk; Vít Penížek; Vladimír Majer; Ondra Sracek; Ben Mapani; Fred Kamona; Imasiku Nyambe
We studied the heavy mineral fraction, separated from mining- and smelter-affected topsoils, from both a humid subtropical area (Mufulira, Zambian Copperbelt) and a hot semi-arid area (Tsumeb, Namibia). High concentrations of metal(loid)s were detected in the studied soils: up to 1450mgAskg(-1), 8980mgCukg(-1), 4640mgPbkg(-1), 2620mgZnkg(-1). A combination of X-ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDS), and electron probe microanalysis (EPMA) helped to identify the phases forming individual metal(loid)-bearing particles. Whereas spherical particles originate from the smelting and flue gas cleaning processes, angular particles have either geogenic origins or they are windblown from the mining operations and mine waste disposal sites. Sulphides from ores and mine tailings often exhibit weathering rims in contrast to smelter-derived high-temperature sulphides (chalcocite [Cu2S], digenite [Cu9S5], covellite [CuS], non-stoichiometric quenched Cu-Fe-S phases). Soils from humid subtropical areas exhibit higher available concentrations of metal(loids), and higher frequencies of weathering features (especially for copper-bearing oxides such as delafossite [Cu(1+)Fe(3+)O2]) are observed. In contrast, metal(loid)s are efficiently retained in semi-arid soils, where a high proportion of non-weathered smelter slag particles and low-solubility Ca-Cu-Pb arsenates occur. Our results indicate that compared to semi-arid areas (where inorganic contaminants were rather immobile in soils despite their high concentrations) a higher potential risk exists for agriculture in mine- and smelter-affected humid subtropical areas (where metal(loid) contaminants can be highly available for the uptake by crops).
Science of The Total Environment | 2018
Martin Mihaljevič; Alice Jarošíková; Vojtěch Ettler; Aleš Vaněk; Vít Penížek; Bohdan Kříbek; Vladislav Chrastný; Ondra Sracek; Jakub Trubač; Miroslav Svoboda; Imasiku Nyambe
The copper (Cu) content and isotopic composition were studied in soils and in pine tree rings at locations close to and far from the Cu smelter, located at Kitwe, Zambia. The soil in the remote area contained 25-75mgkg-1 Cu, whereas the soil close to the smelter contained 207-44,000mgkg-1 Cu. The δ65Cu at the remote area and close to the smelter varied in the range -0.40 to -0.11‰, and -0.44 to 0.01‰ respectively. The δ65Cu of the surface soil at both profiles (-0.44 to -0.40‰) is similar to the isotopic composition of the concentrates processed in the smelter (-0.75 to -0.45‰), i.e. both locations are affected by Cu ore dust. The increase in the δ65Cu in the direction towards the centre of the profile is caused by the oxidative dissolution of Cu(I) from ore minerals, during which heavier Cu is released. In deeper parts of the profile, there is a slight decrease in δ65Cu because of easier mobilisation of the lighter isotope. The tree rings at the two locations differ in the total contents and isotopic composition. At the less contaminated site, the Cu contents equal 0.4 to 1.1mgkg-1 while, at the polluted site, the Cu contents vary in the range 3 to 47mgkg-1. Whereas, at the less contaminated location, the tree rings are substantially enriched in lighter Cu (δ65Cu=-0.76 to -2.2‰), at locations close to the smelter the tree rings have an isotopic composition (-0.31 to -0.88‰) similar to that of the contaminated soil or processed ore. The isotopic compositions of the tree rings close to the smelter are affected particularly by interception of dust containing Cu ore. The δ13C in tree rings demonstrate the interconnection of acidification and Cu mobility.
Environmental Science and Pollution Research | 2018
Ondra Sracek; Bohdan Kříbek; Martin Mihaljevič; Vojtěch Ettler; Aleš Vaněk; Vít Penížek; Jan Filip; František Veselovský; Imasiku Nyambe
The impact of a natural wetland (“dambo” in Zambia) on neutral mine drainage at Luanshya in the Zambian Copperbelt has been investigated during an intermediate discharge period (July) using a multi-method characterization of solid phase samples, sequential extraction analysis, X-ray diffraction, Mössbauer spectroscopy, and scanning electron microscopy combined with water analyses, isotopic analyses, and geochemical modeling. In the wetland, the principal identified solid phases in sediments were carbonates, gypsum, and ferric oxyhydroxides. A significant portion of the ochres was present as insoluble hematite. Mine drainage pH values decrease, and log PCO2
Environmental Monitoring and Assessment | 2018
Ondra Sracek; Bohdan Kříbek; Martin Mihaljevič; Vojtech Ettler; Aleš Vaněk; Vít Penížek; Jan Filip; František Veselovský; Z. B. Bagai
Applied Geochemistry | 2009
Vojtěch Ettler; Zdenek Johan; Bohdan Kříbek; Ondřej Šebek; Martin Mihaljevič
{P}_{{\mathrm{CO}}_2}