Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bohdan Senyuk is active.

Publication


Featured researches published by Bohdan Senyuk.


Nano Letters | 2012

Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals.

Bohdan Senyuk; Julian S. Evans; Paul J. Ackerman; Taewoo Lee; Pramit Manna; Leonid Vigderman; Eugene R. Zubarev; Jao van de Lagemaat; Ivan I. Smalyukh

We demonstrate scaffolding of plasmonic nanoparticles by topological defects induced by colloidal microspheres to match their surface boundary conditions with a uniform far-field alignment in a liquid crystal host. Displacing energetically costly liquid crystal regions of reduced order, anisotropic nanoparticles with concave or convex shapes not only stably localize in defects but also self-orient with respect to the microsphere surface. Using laser tweezers, we manipulate the ensuing nanoparticle-microsphere colloidal dimers, probing the strength of elastic binding and demonstrating self-assembly of hierarchical colloidal superstructures such as chains and arrays.


Optics Letters | 2005

Switchable two-dimensional gratings based on field-induced layer undulations in cholesteric liquid crystals

Bohdan Senyuk; Ivan I. Smalyukh; Oleg D. Lavrentovich

We propose switchable two-dimensional (2D) diffractive gratings with periodic refractive-index modulation arising from layer undulations in cholesteric liquid crystals. The cholesteric cell can be switched between two states: (1) flat layers of a planar cholesteric texture and (2) a square lattice of periodic director modulation associated with layer undulations that produces 2D diffraction patterns. The intensities of the diffraction maxima can be tuned by changing the applied field. The diffractive properties can be optimized for different wavelengths by appropriately choosing cholesteric pitch, cell thickness, and surface treatment.


Physical Review E | 2005

Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells

Ivan I. Smalyukh; Bohdan Senyuk; Peter Palffy-Muhoray; Oleg D. Lavrentovich; H. Huang; Eugene C. Gartland; V. H. Bodnar; Tamas Kosa; Bahman Taheri

We study the phase diagram of director structures in cholesteric liquid crystals of negative dielectric anisotropy in homeotropic cells of thickness d which is smaller than the cholesteric pitch p. The basic control parameters are the frustration ratio d/p and the applied voltage U. Upon increasing U, the direct transition from completely unwound homeotropic structure to the translationally invariant configuration (TIC) with uniform in-plane twist is observed at small d/p < or = 0.5. Cholesteric fingers that can be either isolated or arranged periodically occur at 0.5 < or = d/p<1 and at the intermediate U between the homeotropic unwound and TIC structures. The phase boundaries are also shifted by (1) rubbing of homeotropic substrates that produces small deviations from the vertical alignment; (2) particles that become nucleation centers for cholesteric fingers; (3) voltage driving schemes. A novel reentrant behavior of TIC is observed in the rubbed cells with frustration ratios 0.6 < or = d/p < or = 0.75, which disappears with adding nucleation sites or using modulated voltages. In addition, fluorescence confocal polarizing microscopy (FCPM) allows us to directly and unambiguously determine the three-dimensional director structures. For the cells with strictly vertical alignment, FCPM confirms the director models of the vertical cross sections of four types of fingers previously either obtained by computer simulations or proposed using symmetry considerations. For rubbed homeotropic substrates, only two types of fingers are observed, which tend to align along the rubbing direction. Finally, the new means of control are of importance for potential applications of the cholesteric structures, such as switchable gratings based on periodically arranged fingers and eyewear with tunable transparency based on TIC.


Applied Physics Letters | 2012

Optical manipulation of shape-morphing elastomeric liquid crystal microparticles doped with gold nanocrystals

Yaoran Sun; Julian S. Evans; Taewoo Lee; Bohdan Senyuk; Patrick Keller; Sailing He; Ivan I. Smalyukh

We demonstrate facile optical manipulation of shape of birefringent colloidal microparticles made from liquid crystal elastomers. Using soft lithography and polymerization, we fabricate elastomeric microcylinders with weakly undulating director oriented on average along their long axes. These particles are infiltrated with gold nanospheres acting as heat transducers that allow for an efficient localized transfer of heat from a focused infrared laser beam to a submicrometer region within a microparticle. Photothermal control of ordering in the liquid crystal elastomer using scanned beams allows for a robust control of colloidal particles, enabling both reversible and irreversible changes of shape. Possible applications include optomechanics, microfluidics, and reconfigurable colloidal composites with shape-dependent self-assembly.


Nature Communications | 2012

Molecular reorientation of a nematic liquid crystal by thermal expansion

Young –Ki Kim; Bohdan Senyuk; Oleg D. Lavrentovich

A unique feature of nematic liquid crystals is orientational order of molecules that can be controlled by electromagnetic fields, surface modifications and pressure gradients. Here we demonstrate a new effect in which the orientation of nematic liquid crystal molecules is altered by thermal expansion. Thermal expansion (or contraction) causes the nematic liquid crystal to flow; the flow imposes a realigning torque on the nematic liquid crystal molecules and the optic axis. The optical and mechanical responses activated by a simple temperature change can be used in sensing, photonics, microfluidic, optofluidic and lab-on-a-chip applications as they do not require externally imposed gradients of temperature, pressure, surface realignment, nor electromagnetic fields. The effect has important ramifications for the current search of the biaxial nematic phase as the optical features of thermally induced structural changes in the uniaxial nematic liquid crystal mimic the features expected of the biaxial nematic liquid crystal.


Soft Matter | 2012

Search for biaxiality in a shape-persistent bent-core nematic liquid crystal

Young-Ki Kim; Madhabi Majumdar; Bohdan Senyuk; Luana Tortora; Jens Seltmann; Matthias Lehmann; Antal Jakli; Jim T. Gleeson; Oleg D. Lavrentovich; Samuel Sprunt

Using a range of optical techniques, we have probed the nature of orientational order in a thermotropic bent-core liquid crystal, which features a shape-persistent molecular architecture designed to promote a biaxial nematic phase. In the upper range of the nematic phase (enantiotropic regime), dynamic light scattering reveals strong fluctuations attributable to the biaxial order parameter, in addition to the usual uniaxial director modes. Assuming a Landau-type expansion of the orientational free energy, we estimate the correlation length associated with these fluctuations to be ∼100 nm. At lower temperatures, and mainly in the monotropic regime of the nematic, we observe by optical conoscopy an apparently biaxial texture, which develops when the sample temperature is changed but then relaxes back to a uniaxial state over time scales much longer than observed in the light scattering measurements. A combination of fluorescence confocal polarizing microscopy and coherent anti-Stokes Raman scattering confirms that the conoscopic texture arises from a flow-induced reorientation of the molecules, associated with a large thermal expansion coefficient of the material, rather than from the spontaneous development of a macroscopic secondary optical axis. We discuss a model to account for the observed behavior at both high and low temperatures based on the temperature-dependent formation of nanoscale, biaxially ordered complexes among the bent-core molecules within a macroscopically uniaxial phase.


ACS Nano | 2012

Nonlinear Photoluminescence Imaging of Isotropic and Liquid Crystalline Dispersions of Graphene Oxide

Bohdan Senyuk; Natnael Behabtu; Benjamin G. Pacheco; Taewoo Lee; Gabriel Ceriotti; James M. Tour; Matteo Pasquali; Ivan I. Smalyukh

We report a visible-range nonlinear photoluminescence (PL) from graphene oxide (GO) flakes excited by near-infrared femtosecond laser light. PL intensity has nonlinear dependence on the laser power, implying a multiphoton excitation process, and also strongly depends on a linear polarization orientation of excitation light, being at maximum when it is parallel to flakes. We show that PL can be used for a fully three-dimensional label-free imaging of isotropic, nematic, and lamellar liquid crystalline dispersions of GO flakes in water. This nonlinear PL is of interest for applications in direct label-free imaging of composite materials and study of orientational ordering in mesomorphic phases formed by these flakes, as well as in biomedical and sensing applications utilizing GO.


Physical Review Letters | 2012

Plasmonic Complex Fluids of Nematiclike and Helicoidal Self-Assemblies of Gold Nanorods with a Negative Order Parameter

Qingkun Liu; Bohdan Senyuk; Jianwei Tang; Taewoo Lee; Jun Qian; Sailing He; Ivan I. Smalyukh

We describe a soft matter system of self-organized oblate micelles and plasmonic gold nanorods that exhibit a negative orientational order parameter. Because of anisotropic surface anchoring interactions, colloidal gold nanorods tend to align perpendicular to the director describing the average orientation of normals to the discoidal micelles. Helicoidal structures of highly concentrated nanorods with a negative order parameter are realized by adding a chiral additive and are further controlled by means of confinement and mechanical stress. Polarization-sensitive absorption, scattering, and two-photon luminescence are used to characterize orientations and spatial distributions of nanorods. Self-alignment and effective-medium optical properties of these hybrid inorganic-organic complex fluids match predictions of a simple model based on anisotropic surface anchoring interactions of nanorods with the structured host medium.


Science | 2016

Triclinic nematic colloidal crystals from competing elastic and electrostatic interactions

Haridas Mundoor; Bohdan Senyuk; Ivan I. Smalyukh

Competing forces drive ordering The power and beauty of liquid crystals come from their tendency to order loosely over long length scales. This ordering can be tweaked using external fields, or via tailored boundary conditions, or embedded objects. Mundoor et al. deposited luminescent nanorods into a liquid crystal solvent (see the Perspective by Blanc). This caused a competition between local electrostatic interactions and the elastic ordering of the liquid crystal. The nanorods ordered into a triclinic structure not otherwise attainable. The authors further adjusted the structure using external fields. Science, this issue p. 69; see also p. 40 Competing elastic and electrostatic forces acting on gold nanorods in a nematic host yield triclinic colloidal crystals. [Also see Perspective by Blanc] The self-assembly of nanoparticles can enable the generation of composites with predesigned properties, but reproducing the structural diversity of atomic and molecular crystals remains a challenge. We combined anisotropic elastic and weakly screened electrostatic interactions to guide both orientational and triclinic positional self-ordering of inorganic nanocrystals in a nematic fluid host. The lattice periodicity of these low-symmetry colloidal crystals is more than an order of magnitude larger than the nanoparticle size. The orientations of the nanocrystals, as well as the crystallographic axes of the ensuing triclinic colloidal crystals, are coupled to the uniform alignment direction of the nematic host, which can be readily controlled on large scales. We examine colloidal pair and many-body interactions and show how triclinic crystals with orientational ordering of the semiconductor nanorods emerge from competing long-range elastic and electrostatic forces.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Nematic liquid crystal boojums with handles on colloidal handlebodies

Qingkun Liu; Bohdan Senyuk; M. Tasinkevych; Ivan I. Smalyukh

Topological defects that form on surfaces of ordered media, dubbed boojums, are ubiquitous in superfluids, liquid crystals (LCs), Langmuir monolayers, and Bose–Einstein condensates. They determine supercurrents in superfluids, impinge on electrooptical switching in polymer-dispersed LCs, and mediate chemical response at nematic-isotropic fluid interfaces, but the role of surface topology in the appearance, stability, and core structure of these defects remains poorly understood. Here, we demonstrate robust generation of boojums by controlling surface topology of colloidal particles that impose tangential boundary conditions for the alignment of LC molecules. To do this, we design handlebody-shaped polymer particles with different genus g. When introduced into a nematic LC, these particles distort the nematic molecular alignment field while obeying topological constraints and induce at least 2g − 2 boojums that allow for topological charge conservation. We characterize 3D textures of boojums using polarized nonlinear optical imaging of molecular alignment and explain our findings by invoking symmetry considerations and numerical modeling of experiment-matching director fields, order parameter variations, and nontrivial handle-shaped core structure of defects. Finally, we discuss how this interplay between the topologies of colloidal surfaces and boojums may lead to controlled self-assembly of colloidal particles in nematic and paranematic hosts, which, in turn, may enable reconfigurable topological composites.

Collaboration


Dive into the Bohdan Senyuk's collaboration.

Top Co-Authors

Avatar

Ivan I. Smalyukh

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Qingkun Liu

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Taewoo Lee

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haridas Mundoor

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angel Martinez

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge