Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bohwa Kim is active.

Publication


Featured researches published by Bohwa Kim.


Bioresource Technology | 2013

Harvesting of oleaginous Chlorella sp by organoclays

Young-Chul Lee; Bohwa Kim; Wasif Farooq; Jane Chung; Jong-In Han; Hyun-Jae Shin; Sang Hwa Jeong; Ji-Yeon Park; Jin-Suk Lee; You-Kwan Oh

In microalgae-based biorefinement, one of the highest practical priorities is to reduce the costs of downstream processes. As one potential solution, microalgae harvesting by organoclays has received particularly keen research interest. In the present study, cationic charged aluminum- and magnesium-backboned organoclays were synthesized and solubilized in aqueous solution due to their high-density of amino sites. Each, within 30 min of its injection into 1.7 g/L-concentration microalgal feedstocks, effected harvesting efficiencies of almost 100% at concentrations above 0.6 g/L while maintaining a neutral pH. Conclusively, organoclays, if recycled efficiently, can be uniquely effective microalgae harvesting agents.


Bioresource Technology | 2014

Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas.

Ramasamy Praveenkumar; Bohwa Kim; Eunji Choi; Kyubock Lee; Ji-Yeon Park; Jin-Suk Lee; Young-Chul Lee; You-Kwan Oh

Industrial CO2-rich flue-gases, owing to their eco-toxicity, have yet to be practically exploited for microalgal biomass and lipid production. In this study, various autotrophic and mixotrophic culture modes for an oleaginous microalga, Chlorella sp. KR-1 were compared for the use in actual coal-fired flue-gas. Among the mixotrophic conditions tested, the fed-batch feedings of glucose and the supply of air in dark cycles showed the highest biomass (561 mg/L d) and fatty-acid methyl-ester (168 mg/L d) productivities. This growth condition also resulted in the maximal population of microalgae and the minimal population and types of KR-1-associated-bacterial species as confirmed by particle-volume-distribution and denaturing-gradient-gel-electrophoresis (DGGE) analyses. Furthermore, microalgal lipid produced was assessed, based on its fatty acid profile, to meet key biodiesel standards such as saponification, iodine, and cetane numbers.


RSC Advances | 2014

Aminoclay-templated nanoscale zero-valent iron (nZVI) synthesis for efficient harvesting of oleaginous microalga, Chlorella sp. KR-1

Young-Chul Lee; Kyubock Lee; Yuhoon Hwang; Henrik Rasmus Andersen; Bohwa Kim; So Yeun Lee; Moon-Hee Choi; Ji-Yeon Park; Young-Kyu Han; You-Kwan Oh; Yun Suk Huh

Synthesis of aminoclay-templated nanoscale zero-valent iron (nZVI) for efficient harvesting of oleaginous microalgae was demonstrated. According to various aminoclay loadings (0, 0.25, 0.5, 1.0, 2.5, 5.0, and 7.5 aminoclay–nZVI ratios), the stability of nZVI was investigated as a function of sedimentation rate. Aminoclay-coated nZVI (aminoclay–nZVI composites) showed optimal dispersibility at the 1.0 ratio, resulting in the smallest aggregated size and uniform coating of aminoclay nanoparticles onto nZVI due to electrostatic attraction between nZVI and aminoclay nanoparticles. This silica-coated nZVI composite (ratio 1.0) exhibited a highly positively charged surface (∼+40 mV) and a ferromagnetic property (∼30 emu g−1). On the basis of these characteristics, oleaginous Chlorella sp. KR-1 was harvested within 3 min at a > 20 g L−1 loading under a magnetic field. In a scaled-up (24 L) microalga harvesting process using magnetic rods, microalgae were successfully collected by attachment to the magnetic rods or by precipitation. It is believed that this approach, thanks to the recyclability of aminoclay–nZVI composites, can be applied in a continuous harvesting mode.


Bioresource Technology | 2014

Repeated use of stable magnetic flocculant for efficient harvest of oleaginous Chlorella sp.

Kyubock Lee; So Yeun Lee; Ramasamy Praveenkumar; Bohwa Kim; Jung Yoon Seo; Sang Goo Jeon; Jeong-Geol Na; Ji-Yeon Park; Dong-Myung Kim; You-Kwan Oh

In the present study, a simple magnetic-particle recycling strategy was developed for harvest of the oleaginous microalga Chlorella sp. KR-1. The method entails the flocculation of microalgal cells and bare-Fe3O4 magnetic particles (bMP) by electrostatic attraction and the subsequent recovery of the bMP from the harvested flocs by electrostatic repulsion below and above the isoelectric points (IEP), respectively. For 10 recycles, the bMP showed 94-99% and 90-97% harvest and recovery efficiencies, respectively. Furthermore, neither the use of bMP nor pH adjustment showed any adverse effect on the microalgal cell growth or the co-existing bacterial species, as confirmed from the subsequent medium-recycling test and denaturing gradient gel electrophoresis (DGGE) analysis.


Green Chemistry | 2016

Downstream integration of microalgae harvesting and cell disruption by means of cationic surfactant-decorated Fe3O4 nanoparticles

Jung Yoon Seo; Ramasamy Praveenkumar; Bohwa Kim; Ji-Yeon Park; Jeong-Geol Na; Sang Goo Jeon; Seung Bin Park; Kyubock Lee; You-Kwan Oh

Microalgal biofuel, albeit an exciting potential fossil-fuel-replacement candidate, still requires the development of more advanced downstream processing technology for its price competitiveness. The major challenge in a microalgae-based biorefinery is the efficient separation of microalgae from low-concentration culture broth. The post-harvesting cell-disruption step necessary to render microalgae suitable for lipid extraction, moreover, further raises energy consumption and cost. For the mitigation of biorefinery complexity and costs, we suggest herein a new scheme that integrates the critical downstream processes (harvesting and cell disruption) by means of cationic surfactant-decorated Fe3O4 nanoparticles. The cationic surfactants’ quaternary ammonium heads play an important role in not only flocculating negatively charged microalgae but also weakening thick cell walls. In the present study, the harvesting efficiency and cell-damaging effects of three cationic surfactants — cetrimonium bromide (CTAB), cetylpyridinium chloride (CPC), and cetylpyridinium bromide (CPB) — were evaluated. The CTAB-decorated Fe3O4 nanoparticles, which were found to be the most effective, achieved a 96.6% microalgae harvesting efficiency at a dosage of 0.46 g particle per g cell. Next, for the purposes of magnetic nanoparticle recycling and high-purity microalgal biomass obtainment, microalgae detachment from microalgae-Fe3O4 flocs was performed by addition of an anionic surfactant, sodium dodecyl sulfate (SDS). The detached CTAB-decorated Fe3O4 nanoparticles showed a steady reuse efficiency of about 80%. Furthermore, microalgae harvesting by CTAB-decorated Fe3O4 nanoparticles could contribute to a great improvement in the total extracted lipid content and greener wet extraction without the additional energy-intensive cell-disruption step, thus demonstrating the cell-disruption ability of CTAB-decorated Fe3O4 nanoparticles.


Bioresource Technology | 2015

Ferric chloride based downstream process for microalgae based biodiesel production

Yeong Hwan Seo; Mina Sung; Bohwa Kim; You-Kwan Oh; Dong Yeon Kim; Jong-In Han

In this study, ferric chloride (FeCl3) was used to integrate downstream processes (harvesting, lipid extraction, and esterification). At concentration of 200 mg/L and at pH 3, FeCl3 exhibited an expected degree of coagulation and an increase in cell density of ten times (170 mg/10 mL). An iron-mediated oxidation reaction, Fenton-like reaction, was used to extract lipid from the harvested biomass, and efficiency of 80% was obtained with 0.5% H2O2 at 90 °C. The iron compound was also employed in the esterification step, and converted free fatty acids to fatty acid methyl esters under acidic conditions; thus, the fatal problem of saponification during esterification with alkaline catalysts was avoided, and esterification efficiency over 90% was obtained. This study clearly showed that FeCl3 in the harvesting process is beneficial in all downstream steps and have a potential to greatly reduce the production cost of microalgae-originated biodiesel.


Ecotoxicology and Environmental Safety | 2014

Aquatic ecotoxicity effect of engineered aminoclay nanoparticles

Moon-Hee Choi; Yuhoon Hwang; Hyun Uk Lee; Bohwa Kim; Go-Woon Lee; You-Kwan Oh; Henrik Rasmus Andersen; Young-Chul Lee; Yun Suk Huh

In the present study the short term aquatic ecotoxicity of water-solubilized aminoclay nanoparticles (ANPs) of ~51±31 nm average hydrodynamic diameter was characterized. An ecotoxicological evaluation was carried out utilizing standard test organisms of different phyla and trophic levels namely the eukaryotic microalga Pseudokirchneriella subcapitata, the crustacean Daphnia magna and the bioluminescent marine bacteria Vibrio fisheri. The effective inhibitory concentration (EC50) with 95% confidence limits for the microalga was 1.29 mg/L (0.72-1.82) for the average growth rate and 0.26 mg/L (0.23-0.31) for the cell yield. The entrapping of algal cells in aggregates of ANP may play a major role in the growth inhibition of algae P. subcapitata. No inhibition was observed for V. fisheri up to 25,000 mg/L (no observed effect concentration; NOEC). For D. magna no immobilization was observed in a limit test with 100 mg/L in 24 h while in 48 h a single animal was immobilized (5% inhibition). Correspondingly, the NOEC of ANP in 24 h was 100 mg/L and the lowest observed effect concentration (LOEC) for 48 h was 100 mg/L. Therefore it can be considered to use ANP as an algal-inhibition agent at concentrations <100 mg/L without affecting or only mildly affecting other organisms including zooplanktons, but further studies on the environmental fate and chronic toxicity of ANP is needed to confirm this.


Bioresource Technology | 2015

An integrated process for microalgae harvesting and cell disruption by the use of ferric ions

Dong-Yeon Kim; You-Kwan Oh; Ji-Yeon Park; Bohwa Kim; Sun-A Choi; Jong-In Han

In this study, a simultaneous process of harvesting biomass and extracting crude bio-oil was attempted from wet microalgae biomass using FeCl3 and Fe2(SO4)3 as both coagulant and cell-disrupting agent. A culture solution of Chlorella sp. KR-1 was firstly concentrated to 20 g/L and then proceeded for cell disruption with the addition of H2O2. Optimal dosage were 560 and 1060 mg/L for FeCl3 and Fe2(SO4)3, showing harvesting efficiencies of more than 99%. Optimal extraction conditions were identified via the response surface method (RSM), and the extraction yield was almost the same at 120 °C for both iron salts but FAME compositions after transesterification was found to be quite different. Given iron salts were a reference coagulant in water treatment in general and microalgae harvesting in particular, the present approach of using it for harvesting and oil-extraction in a simultaneous manner can serve as a practical route for the microalgae-derived biodiesel production.


Bioresource Technology | 2014

Aminoclay-induced humic acid flocculation for efficient harvesting of oleaginous Chlorella sp.

Young-Chul Lee; Seo Yeong Oh; Hyun Uk Lee; Bohwa Kim; So Yeun Lee; Moon-Hee Choi; Go-Woon Lee; Ji-Yeon Park; You-Kwan Oh; Taegong Ryu; Young-Kyu Han; Kang-Sup Chung; Yun Suk Huh

Biofuels (biodiesel) production from oleaginous microalgae has been intensively studied for its practical applications within the microalgae-based biorefinement process. For scaled-up cultivation of microalgae in open ponds or, for further cost reduction, using wastewater, humic acids present in water-treatment systems can positively and significantly affect the harvesting of microalgae biomass. Flocculation, because of its simplicity and inexpensiveness, is considered to be an efficient approach to microalgae harvesting. Based on the reported cationic aminoclay usages for a broad spectrum of microalgae species in wide-pH regimes, aminoclay-induced humic acid flocculation at the 5g/L aminoclay loading showed fast floc formation, approximately 100% harvesting efficiency, which was comparable to the only-aminoclay treatment at 5g/L, indicating that the humic acid did not significantly inhibit the microalgae harvesting behavior. As for the microalgae flocculation mechanism, it is suggested that cationic nanoparticles decorated on macromolecular matters function as a type of network in capturing microalgae.


ACS Applied Materials & Interfaces | 2015

Magnetic-Nanoflocculant-Assisted Water-Nonpolar Solvent Interface Sieve for Microalgae Harvesting.

Kyubock Lee; Jeong-Geol Na; Jung Yoon Seo; Tae Soup Shim; Bohwa Kim; Ramasamy Praveenkumar; Ji-Yeon Park; You-Kwan Oh; Sang Goo Jeon

Exploitation of magnetic flocculants is regarded as a very promising energy-saving approach to microalgae harvesting. However, its practical applicability remains limited, mainly because of the problem of the postharvest separation of magnetic flocculants from microalgal flocs, which is crucial both for magnetic-flocculant recycling and high-purity microalgal biomasses, but which is also a very challenging and energy-consuming step. In the present study, we designed magnetic nanoflocculants dually functionalizable by two different organosilane compounds, (3-aminopropyl)triethoxysilane (APTES) and octyltriethoxysilane (OTES), which flocculate negatively charged microalgae and are readily detachable at the water-nonpolar organic solvent (NOS) interface only by application of an external magnetic field. APTES functionalization imparts a positive zeta potential charge (29.6 mV) to magnetic nanoflocculants, thereby enabling microalgae flocculation with 98.5% harvesting efficiency (with a dosage of 1.6 g of dMNF/g of cells). OTES functionalization imparts lipophilicity to magnetic nanoflocculants to make them compatible with NOS, thus effecting efficient separation of magnetic flocculants passing through the water-NOS interface sieve from hydrophilic microalgae. Our new energy-saving approach to microalgae harvesting concentrates microalgal cultures (∼1.5 g/L) up to 60 g/L, which can be directly connected to the following process of NOS-assisted wet lipid extraction or biodiesel production, and therefore provides, by simplifying multiple downstream processes, a great potential cost reduction in microalgae-based biorefinement.

Collaboration


Dive into the Bohwa Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramasamy Praveenkumar

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge