Boihon C. Yee
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Boihon C. Yee.
Archives of Biochemistry and Biophysics | 1988
Francisco J. Florencio; Boihon C. Yee; Thomas C. Johnson; Bob B. Buchanan
An NADP/thioredoxin system, consisting of NADPH, NADP-thioredoxin reductase (NTR), and its thioredoxin, thioredoxin h, has been previously described for heterotrophic plant tissues, i.e., wheat seeds and cultured carrot cells. Until now there was no evidence for this system in green leaves. Here, we report the identification of protein components of the NADP/thioredoxin system in leaves of several species. Thioredoxin h and NTR, which were both recovered in the extrachloroplastic fraction, were purified to apparent homogeneity from spinach leaves. This represents the first time that NTR has been characterized from a plant source. Similar to that from bacterial and mammalian sources, spinach leaf NTR was a flavoprotein (Mr 68,000) composed of two subunits of identical molecular mass (Mr 33,000) that resembled Escherichia coli NTR immunologically. Spinach thioredoxin h existed in two forms (Mr of 13,500 and 12,000) and was highly specific for plant NTR. Thioredoxin h and NTR partially purified from spinach roots showed properties similar to their counterparts from leaves. Spinach cytosolic thioredoxin h differed from chloroplast thioredoxin m or f from the same source but was similar to thioredoxin h from wheat seed in immunological properties.
Archives of Biochemistry and Biophysics | 1987
M. Droux; J.-P. Jacquot; M. Miginac-Maslow; Pierre Gadal; J.C. Huet; N.A. Crawford; Boihon C. Yee; Bob B. Buchanan
Ferredoxin-thioredoxin reductase (FTR), an enzyme involved in the light regulation of chloroplast enzymes, was purified to homogeneity from leaves of spinach (a C3 plant) and corn (a C4 plant) and from cells of a cyanobacterium (Nostoc muscorum). The enzyme is a yellowish brown iron-sulfur protein, containing four nonheme iron and labile sulfide groups, that catalyzes the activation of NADP-malate dehydrogenase and fructose 1,6-bisphosphatase in the presence of ferredoxin and of thioredoxin m and f, respectively. FTR is synonymous with the protein earlier called ferralterin. FTR showed an Mr of about 30,000 (determined by sedimentation equilibrium ultracentrifugation, amino acid composition, gel filtration, and gradient gel electrophoresis) and was composed of two dissimilar subunits (as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). One of the FTR subunits from each source was similar both in Mr (about 13,000) and immunological properties, while the other subunit (of variable molecular weight) was characteristic of a particular organism. The similar subunit contained a disulfide group that was rapidly reduced by a dithiol (dithiothreitol) but not by monothiols (2-mercaptoethanol or reduced glutathione). Homogeneous FTR formed a tight noncovalent complex with ferredoxin on affinity columns. The basis for the structural variation in the different FTR enzymes remains to be determined.
The Journal of Allergy and Clinical Immunology | 1999
Gregorio del Val; Boihon C. Yee; Rosa Lozano; Bob B. Buchanan; Richard W. Ermel; Yung-Moo Lee; Oscar L. Frick
BACKGROUND By resisting digestion in the stomach, the major bovine milk allergen, beta-lactoglobulin, is believed to act as a transporter of vitamin A and retinol to the intestines. beta-Lactoglobulin has 2 intramolecular disulfide bonds that may be responsible for its allergic effects. OBJECTIVE This study was carried out to assess the importance of disulfide bonds to the allergenicity and digestibility of beta-lactoglobulin. METHODS beta-Lactoglobulin was subjected to reduction by the ubiquitous protein thioredoxin, which was itself reduced by the reduced form of nicotinamide adenine dinucleotide phosphate by means of nicotinamide adenine dinucleotide phosphate-thioredoxin reductase. Digestibility was measured with a simulated gastric fluid; results were analyzed by SDS-PAGE. Allergenicity was assessed with an inbred colony of high IgE-producing dogs sensitized to milk. RESULTS As found for other proteins with intramolecular disulfide bonds, beta-lactoglobulin was reduced specifically by the thioredoxin system. After reduction of one or both of its disulfide bonds, beta-lactoglobulin became strikingly sensitive to pepsin and lost allergenicity as determined by skin test responses and gastrointestinal symptoms in the dog model. CONCLUSION The results provide new evidence that thioredoxin can be applied to enhance digestibility and lower allergenicity of food proteins.
Planta | 1996
Rosa Lozano; Joshua H. Wong; Boihon C. Yee; Anne Peters; Karoly Kobrehel; Bob B. Buchanan
Thioredoxin of the h-type — earlier linked to the reduction of wheat (Triticum durum Desf. cv. Monroe) endosperm proteins — was converted from an oxidized to a partially reduced state during germination and seedling development. While the abundance of thioredoxin progressively decreased during this period, the availability of reducing equivalents, defined as the product of the relative abundance of thioredoxin and the percent reduction, increased. The amount of the enzyme catalyzing the reduction of thioredoxin h (NADP-thioredoxin reductase) remained constant. The activities of enzymes generating the NADPH needed for the reduction of thioredoxin (glucose 6-phosphate and 6-phosphogluconate dehydrogenases) increased. The level of thioredoxin h in the endosperm appeared to be controlled by the embryo via hormones. Gibberellic acid enhanced the disappearance of thioredoxin, whereas abscisic acid showed the opposite effect. Moreover, uniconazole, an inhibitor of gibberellic acid synthesis, slowed seedling growth and inhibited the disappearance of thioredoxin in a manner reversible by gibberellic acid. The results are consistent with a role for thioredoxin h in initiating the mobilization of nitrogen and carbon needed for germination and seedling development.
Archives of Biochemistry and Biophysics | 1991
Frank Marcus; S.H. Chamberlain; C. Chu; F.R. Masiarz; S. Shin; Boihon C. Yee; Bob B. Buchanan
Thioredoxin h has been purified to electrophoretic homogeneity from spinach roots using a procedure devised for leaves. The root thioredoxin (h2 form) differed from chloroplast and animal thioredoxins in showing an atypical active site (Cys-Ala-Pro-Cys) but otherwise resembled animal thioredoxin in structure. Sequence data for a total of 72 residues of spinach root thioredoxin h2 (about 69% of the primary structure) showed 43-44% identity with rabbit and rat thioredoxin. Analysis of cell fractions from the endosperm of germinating castor beans revealed that thioredoxin h occurs in the cytosol, endoplasmic reticulum, and mitochondria. The present findings demonstrate a similarity between plant thioredoxin h and animal thioredoxins in structure and intracellular location and raise the question of whether these proteins have similar functions.
Archives of Biochemistry and Biophysics | 1984
Jean-Pierre Jacquot; Pierre Gadal; Boihon C. Yee; Nancy A. Crawford; Bob B. Buchanan
The mechanism of activation of thioredoxin-linked NADP-malate dehydrogenase was investigated by using 14C-iodoacetate and 14C-dansylated thioredoxin m, and Sepharose affinity columns (thioredoxin m, NADP-malate dehydrogenase) as probes to monitor enzyme sulfhydryl status and enzyme-thioredoxin interaction. The data indicate that NADP-malate dehydrogenase, purified to homogeneity from corn leaves, is activated by a net transfer of reducing equivalents from thioredoxin m, reduced by dithiothreitol, to enzyme disulfide groups, thereby yielding oxidized thioredoxin m and reduced enzyme. The appearance of new sulfhydryl groups that accompanies the activation of NADP-malate dehydrogenase appears to involve a structural change that is independent of the formation of a stable complex between the enzyme and reduced thioredoxin m. The data are consistent with the conclusion that oxygen promotes deactivation of NADP-malate dehydrogenase through oxidation of SH groups on reduced thioredoxin and on the reduced (activated) enzyme.
Biological Trace Element Research | 1996
Gerald F. Combs; Carlos Garbisu; Boihon C. Yee; Andrew Yee; Donald E. Carlson; Nancy R. Smith; Andrew C. Magyarosy; Terrance Leighton; Bob B. Buchanan
The bioavailability of selenium (Se) was determined in bacterial strains that reduce selenite to red elemental Se (Seo). A laboratory strain ofBacillus subtilis and a bacterial rod isolated from soil in the vicinity of the Kesterson Reservoir, San Joaquin Valley, CA, (Microbacterium arborescens) were cultured in the presence of 1 mM sodium selenite (Na2SeO3). After harvest, the washed, lyophilizedB. subtilis andM. arborescens samples contained 2.62 and 4.23% total Se, respectively, which was shown to consist, within error, entirely of Seo. These preparations were fed to chicks as supplements to a low-Se, vitamin E-free diet. Three experiments showed that the Se in both bacteria had bioavailabilities of approx 2% that of selenite. A fourth experiment revealed that gray Seo had a bioavailability of 2% of selenite, but that the bioavailability of red Seo depended on the way it was prepared (by reduction of selenite). When glutathione was the reductant, bioavailability resembled that of gray Seo and bacterial Se; when ascorbate was the reductant, bioavailability was twice that level (3–4%). These findings suggest that aerobic bacteria such asB. subtilis andM. arborescens may be useful for the bioremediation of Se-contaminated sites, i.e., by converting selenite to a form of Se with very low bioavailability.
Archives of Biochemistry and Biophysics | 1986
Nancy A. Crawford; Boihon C. Yee; Steven W. Hutcheson; Ricardo A. Wolosiuk; Bob B. Buchanan
Procedures are described for the purification to homogeneity of chloroplast thioredoxins f and m from leaves of corn (Zea mays, a C4 plant) and spinach (Spinacea oleracea, a C3 plant). The C3 and C4f thioredoxins were similar immunologically and biochemically, but differed in certain of their physiochemical properties. The f thioredoxins from the two species were capable of activating both NADP-malate dehydrogenase (EC 1.1.1.37) and fructose-1,6-bisphosphatase (EC 3.1.3.11) when tested in standard thioredoxin assays. Relative to its spinach counterpart, corn thioredoxin f showed a greater molecular mass (15.0-16.0 kDa vs 10.5 kDa), lower isoelectric point (ca. 5.2 vs 6.0), and lower ability to form a stable noncovalent complex with its target fructose bisphosphatase enzyme. The C3 and C4 m thioredoxins were similar in their specificity (ability to activate NADP-malate dehydrogenase, and not fructose-1,6-bisphosphatase) and isoelectric points (ca. 4.8), but differed slightly in molecular mass (13.0 kDa for spinach vs 13.5 kDa for corn) and substantially in their immunological properties. Results obtained in conjunction with these studies demonstrated that the thioredoxin m-linked activation of NADP-malate dehydrogenase in selectively enhanced by the presence of halide ions (e.g., chloride) and by an organic solvent (e.g., 2-propanol). The results suggest that in vivo NADP-malate dehydrogenase interacts with thylakoid membranes and is regulated to a greater extent by thioredoxin m than thioredoxin f.
Archives of Microbiology | 1981
Boihon C. Yee; A. de la Torre; Nancy A. Crawford; Catalina Lara; Donald E. Carlson; Bob B. Buchanan
Cell-free preparations of the cyanobacterium (bluegreen alga) Nostoc muscorum were assayed for thioredoxins and enzymes catalyzing the ferredoxin and NADP-linked reduction of thioredoxin. Nostoc was found to have two different thioredoxins: one of approximate molecular weight 16,000 (designated Nostoc thioredoxin f) that selectively activated chloroplast fructose 1,6-bisphosphatase, and another of approximate molecular weight 9,000 (designated Nostoc thioredoxin m) that selcetively activated chloroplast NADP-malate dehydrogenase. The two thioredoxins could be reduced either chemically with dithiothreitol or photochemically with ferredoxin and ferredoxin-thioredoxin reductase which, like the recently found regulatory iron-sulfur protein ferralterin, was present in Nostoc cells. Nostoc ferredoxin-thioredoxin reductase appeared to be similar to its chloroplast counterpart in enzyme specificity, molecular weight, and spectral properties. The Nostoc and spinach chloroplast ferredoxin-thioredoxin reductases as well as their thioredoxins, ferredoxins, and chlorophyll containing membranes were interchangeable in activating chloroplast fructose 1,6-bisphosphatase and NADP-malate dehydrogenase. There was no evidence for an NADP-linked thioredoxin reductase such as that of E. coli. The results are in accord with the conclusion that the cyanobacteria resemble higher plants in having a functional ferredoxin/thioredoxin system rather than an NADP/thioredoxin system typical of other bacteria.
Archives of Biochemistry and Biophysics | 1990
Susumu Morigasaki; K. Takata; Yukika Sanada; Keishiro Wada; Boihon C. Yee; S. Shin; Bob B. Buchanan
Ferredoxin and the enzyme catalyzing its reduction by NADPH, ferredoxin-NADP reductase (ferredoxin-NADP+ oxidoreductase or FNR), were found to be present in roots of spinach (Spinacia oleracea). Localization experiments with endosperm of germinating castor beans (Ricinus communis), a classical nonphotosynthetic tissue for cell fractionation studies, confirmed that ferredoxin and FNR are localized in the plastid fraction. Both proteins were purified from spinach roots and found to resemble their leaf counterparts in activity, spectral properties, and complex formation, but to differ in amino acid composition and amino terminal sequence. The results indicate that the primary structures of the FNR and ferredoxin of spinach roots differ from that of the corresponding leaf proteins. Together with earlier findings, the present results provide evidence that nonphotosynthetic plastids, including those of roots, are capable of reducing ferredoxin with heterotrophically generated NADPH.