Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bojana Zupan is active.

Publication


Featured researches published by Bojana Zupan.


Neuropsychopharmacology | 2009

Paradoxical Anxiogenic Response of Juvenile Mice to Fluoxetine

Ji-eun Oh; Bojana Zupan; Steven S. Gross; Miklós Tóth

Depression, anxiety, and conduct disorders are common in children and adolescents, and selective serotonin reuptake inhibitors (SSRIs) are often used to treat these conditions. Fluoxetine (Prozac) is the first approved SSRI for the treatment of depression in this population. Although it is believed that overall, fluoxetine is effective in child and adolescent psychiatry, there have been reports of specific adverse drug effects, most prominently, suicidality and psychiatric symptoms such as agitation, worsening of depression, and anxiety. Chronic fluoxetine substantially increases brain extracellular 5-HT concentrations, and the juvenile developing brain may respond to supraphysiological 5-HT levels with specific adverse effects not seen or less prominent in adult brain. Using novelty-induced hypophagia, as well as open-field and elevated plus maze tests, we show that both Swiss Webster and C57Bl/6 mice, receiving fluoxetine in a clinically relevant dose and during their juvenile age corresponding to child–adolescent periods in humans, exhibit a paradoxical anxiogenic response. The adverse effects of juvenile fluoxetine disappeared upon drug discontinuation and no long-term behavioral consequences were apparent. No adverse effect to chronic fluoxetine was seen in adult mice and a dose-dependent anxiolytic effect developed. These data show that the age of the mice, independently of the strains and tests used in this study, is the determining factor of whether the response to chronic fluoxetine is anxiolytic or anxiogenic. Taken together, the response of the juvenile and adult brain to fluoxetine could be fundamentally different and the juvenile fluoxetine administration mouse model described here may help to identify the mechanism underlying this difference.


Proceedings of the National Academy of Sciences of the United States of America | 2010

The serotonin1A receptor gene as a genetic and prenatal maternal environmental factor in anxiety

Georgia Gleason; Bingkun Liu; S. Bruening; Bojana Zupan; A. Auerbach; Willie Mark; Oh Je; Judit Gal-Toth; Francis S. Lee; Miklós Tóth

Low serotonin1A receptor (5-HT1AR) binding is a risk factor for anxiety and depression, and deletion of the 5-HT1AR results in anxiety-like behavior in mice. Here we show that anxiety-like behavior in mice also can be caused, independently of the offsprings own 5-HT1AR genotype, by a receptor deficit in the mother: a nongenetic transmission of a genetic defect. Some of the nongenetically transmitted anxiety manifestations were acquired prenatally and linked to a delay in dentate gyrus maturation in the ventral hippocampus of the offspring. Both the developmental delay and the anxiety-like phenotype were phenocopied by the genetic inactivation of p16ink4a encoding a cyclin-dependent kinase inhibitor implicated in neuronal precursor differentiation. No maternal 5-HT1AR genotype-dependent anxiety developed when the strain background was switched from Swiss Webster to C57BL/6, consistent with the increased resilience of this strain to early adverse environment. Instead, all anxiety manifestations were caused by the offsprings own receptor deficiency, indicating that the genetic and nongenetic effects converge to common anxiety manifestations. We propose that 5-HT1AR deficit represents a dual risk for anxiety and that vulnerability to anxiety associated with genetic 5-HT1AR deficiency can be transmitted by both genetic and nongenetic mechanisms in a population. Thus, the overall effect of risk alleles can be higher than estimated by traditional genetic assays and may contribute to the relatively high heritability of anxiety and psychiatric disorders in general.


Science Signaling | 2014

KCNQ1, KCNE2, and Na(+)-coupled solute transporters form reciprocally regulating complexes that affect neuronal excitability

Geoffrey W. Abbott; Kwok-Keung Tai; Daniel L. Neverisky; Alex Hansler; Zhaoyang Hu; Torsten K. Roepke; Daniel J. Lerner; Qiuying Chen; Li Liu; Bojana Zupan; Miklós Tóth; Robin L. Haynes; Xiaoping Huang; Didem Demirbas; Roberto Buccafusca; Steven S. Gross; Vikram A. Kanda; Gerard T. Berry

Complexes of solute transporters and potassium channels that reciprocally regulate each other may contribute to seizure susceptibility. Stopping Seizures The activity of potassium channels limits neuronal excitability, and mutations in the regulatory subunit (KCNE2), which promotes the activity of the potassium-conducting pore (KCNQ1), are associated with increased seizure susceptibility. Abbott et al. found that SMIT1, which transports the molecule myo-inositol, associated with KCNQ1 or KCNQ1-KCNE2 complexes. When complexed with KCNE2, KCNQ1 is constitutively active. SMIT1 activity was increased in the presence of KCNQ1 but was inhibited in the presence of KCNQ1-KCNE2. SMIT1 increased the activity of both KCNQ1 and KCNQ1-KCNE2 complexes. The increased seizure activity of mice deficient in KCNE2 was attenuated by administration of myo-inositol, suggesting that a decrease in SMIT1 activity or alterations in the activity of these molecular complexes may contribute to seizure susceptibility. Na+-coupled solute transport is crucial for the uptake of nutrients and metabolic precursors, such as myo-inositol, an important osmolyte and precursor for various cell signaling molecules. We found that various solute transporters and potassium channel subunits formed complexes and reciprocally regulated each other in vitro and in vivo. Global metabolite profiling revealed that mice lacking KCNE2, a K+ channel β subunit, showed a reduction in myo-inositol concentration in cerebrospinal fluid (CSF) but not in serum. Increased behavioral responsiveness to stress and seizure susceptibility in Kcne2−/− mice were alleviated by injections of myo-inositol. Suspecting a defect in myo-inositol transport, we found that KCNE2 and KCNQ1, a voltage-gated potassium channel α subunit, colocalized and coimmunoprecipitated with SMIT1, a Na+-coupled myo-inositol transporter, in the choroid plexus epithelium. Heterologous coexpression demonstrated that myo-inositol transport by SMIT1 was augmented by coexpression of KCNQ1 but was inhibited by coexpression of both KCNQ1 and KCNE2, which form a constitutively active, heteromeric K+ channel. SMIT1 and the related transporter SMIT2 were also inhibited by a constitutively active mutant form of KCNQ1. The activities of KCNQ1 and KCNQ1-KCNE2 were augmented by SMIT1 and the glucose transporter SGLT1 but were suppressed by SMIT2. Channel-transporter signaling complexes may be a widespread mechanism to facilitate solute transport and electrochemical crosstalk.


Neuropsychopharmacology | 2009

TRH-Receptor-Type-2-Deficient Mice are Euthyroid and Exhibit Increased Depression and Reduced Anxiety Phenotypes

Yuhua Sun; Bojana Zupan; Bruce M. Raaka; Miklós Tóth; Marvin C. Gershengorn

Thyrotropin-releasing hormone (TRH) is a neuropeptide that initiates its effects in mice by interacting with two G-protein-coupled receptors, TRH receptor type 1 (TRH-R1) and TRH receptor type 2 (TRH-R2). Two previous reports described the effects of deleting TRH-R1 in mice. TRH-R1 knockout mice exhibit hypothyroidism, hyperglycemia, and increased depression and anxiety-like behavior. Here we report the generation of TRH-R2 knockout mice. The phenotype of these mice was characterized using gross and histological analyses along with blood hematological assays and chemistries. Standard metabolic tests to assess glucose and insulin tolerance were performed. Behavioral testing included elevated plus maze, open field, tail suspension, forced swim, and novelty-induced hypophagia tests. TRH-R2 knockout mice are euthyroid with normal basal and TRH-stimulated serum levels of thyroid-stimulating hormone (thyrotropin), are normoglycemic, and exhibit normal development and growth. Female, but not male, TRH-R2 knockout mice exhibit moderately increased depression-like and reduced anxiety-like phenotypes. Because the behavioral changes in TRH-R1 knockout mice may have been caused secondarily by their hypothyroidism whereas TRH-R2 knockout mice are euthyroid, these data provide the first evidence for the involvement of the TRH/TRH-R system, specifically extrahypothalamic TRH/TRH-R2, in regulating mood and affect.


Behavioural Brain Research | 2012

Behavioral characterization of cereblon forebrain-specific conditional null mice: A model for human non-syndromic intellectual disability

Anjali M. Rajadhyaksha; Stephen Ra; Sarah Kishinevsky; Anni S. Lee; Peter Romanienko; Mariel A. DuBoff; Chingwen Yang; Bojana Zupan; Maureen E. Byrne; Zeeba R. Daruwalla; Willie Mark; Barry E. Kosofsky; Miklós Tóth; Joseph J. Higgins

A nonsense mutation in the human cereblon gene (CRBN) causes a mild type of autosomal recessive non-syndromic intellectual disability (ID). Animal studies show that crbn is a cytosolic protein with abundant expression in the hippocampus (HPC) and neocortex (CTX). Its diverse functions include the developmental regulation of ion channels at the neuronal synapse, the mediation of developmental programs by ubiquitination, and a target for herpes simplex type I virus in HPC neurons. To test the hypothesis that anomalous CRBN expression leads to HPC-mediated memory and learning deficits, we generated germ-line crbn knock-out mice (crbn(-/-)). We also inactivated crbn in forebrain neurons in conditional knock-out mice in which crbn exons 3 and 4 are deleted by cre recombinase under the direction of the Ca(2+)/calmodulin-dependent protein kinase II alpha promoter (CamKII(cre/+), crbn(-/-)). crbn mRNA levels were negligible in the HPC, CTX, and cerebellum (CRBM) of the crbn(-/-) mice. In contrast, crbn mRNA levels were reduced 3- to 4-fold in the HPC, CTX but not in the CRBM in CamKII(cre/+), crbn(-/-) mice as compared to wild type (CamKII(cre/+), crbn(+/+)). Contextual fear conditioning showed a significant decrease in the percentage of freezing time in CamKII(cre/+), crbn(-/-) and crbn(-/-) mice while motor function, exploratory motivation, and anxiety-related behaviors were normal. These findings suggest that CamKII(cre/+), crbn(-/-) mice exhibit selective HPC-dependent deficits in associative learning and supports the use of these mice as in vivo models to study the functional consequences of CRBN aberrations on memory and learning in humans.


Journal of Pharmacology and Experimental Therapeutics | 2008

Inactivation of the Maternal Fragile X Gene Results in Sensitization of GABAB Receptor Function in the Offspring

Bojana Zupan; Miklós Tóth

Fragile X syndrome is an X-linked disorder caused by the inactivation of the FMR1 gene, with symptoms ranging from impaired cognitive functions to seizures, anxiety, sensory abnormalities, and hyperactivity. Although fragile X syndrome is considered a typical Mendelian disorder, we have recently reported that the environment, specifically the fmr1+/- or fmr1-/- [H or knockout (KO)] maternal environment, elicits on its own a partial fragile X-like phenotype and can contribute to the overall phenotype of fmr1-/0 (KO) male offspring. Genetically fmr1+/0 (WT) males born to H females (Hmaternal > WToffspring), similar to KO male offspring born to H and KO mothers (H > KO and KO > KO), exhibit locomotor hyperactivity. These mice also showed reduced D2 autoreceptor function, indicating a possible diminished feedback inhibition of dopamine (DA) release in the nigrostriatal and mesolimbic systems. The GABAergic system also regulates DA release, in part via presynaptic GABAB receptors (Rs) located on midbrain dopaminergic neurons. Here, we show that the locomotor inhibitory effect of the GABABR agonist baclofen [4-amino-3-(4-chlorophenyl)-butanoic acid] is enhanced in all progeny of mutant mothers (H > WT, H > KO, and KO > KO) compared with WT > WT mice, irrespective of their own genotype. However, increased sensitivity to baclofen was selective and limited to the locomotor response because the muscle-relaxant and sedative effects of the drug were not altered by the maternal environment. These data show that GABABR sensitization, traditionally induced pharmacologically, can also be elicited by the fmr1-deficient maternal environment.


Neuropsychopharmacology | 2008

Wild-Type Male Offspring of fmr-1 +/− Mothers Exhibit Characteristics of the Fragile X Phenotype

Bojana Zupan; Miklós Tóth

Fragile X syndrome is an X-linked disorder caused by the inactivation of the FMR-1 gene with symptoms ranging from impaired cognitive functions to seizures, anxiety, sensory abnormalities, and hyperactivity. Males are more severely affected than heterozygote (H) females, who, as carriers, have a 50% chance of transmitting the mutated allele in each pregnancy. fmr-1 knockout (KO) mice reproduce fragile X symptoms, including hyperactivity, seizures, and abnormal sensory processing. In contrast to the expectation that wild-type (WT) males born to H (fmr-1+/−) mothers (H>WT) are behaviorally normal and indistinguishable from WT males born to WT mothers (WT>WT); here, we show that H>WT offspring are more active than WT>WT offspring and that their hyperactivity is similar to male KO mice born to H or KO (fmr-1−/−) mothers (H>KO/KO>KO). H>WT mice, however, do not exhibit seizures or abnormal sensory processing. Consistent with their hyperactivity, the effect of the D2 agonist quinpirole is reduced in H>WT as well as in H>KO and KO>KO mice compared to WT>WT offspring, suggesting a diminished feedback inhibition of dopamine release. Our data indicate that some aspects of hyperactivity and associated dopaminergic changes in ‘fragile X’ mice are a maternal fmr-1 genotype rather than an offspring fmr-1 genotype effect.


Frontiers in Psychiatry | 2011

Maternal genetic mutations as gestational and early life influences in producing psychiatric disease-like phenotypes in mice.

Georgia Gleason; Bojana Zupan; Miklós Tóth

Risk factors for psychiatric disorders have traditionally been classified as genetic or environmental. Risk (candidate) genes, although typically possessing small effects, represent a clear starting point to elucidate downstream cellular/molecular pathways of disease. Environmental effects, especially during development, can also lead to altered behavior and increased risk for disease. An important environmental factor is the mother, demonstrated by the negative effects elicited by maternal gestational stress and altered maternal care. These maternal effects can also have a genetic basis (e.g., maternal genetic variability and mutations). The focus of this review is “maternal genotype effects” that influence the emotional development of the offspring resulting in life-long psychiatric disease-like phenotypes. We have recently found that genetic inactivation of the serotonin 1A receptor (5-HT1AR) and the fmr1 gene (encoding the fragile X mental retardation protein) in mouse dams results in psychiatric disease-like phenotypes in their genetically unaffected offspring. 5-HT1AR deficiency in dams results in anxiety and increased stress responsiveness in their offspring. Offspring of 5-HT1AR deficient dams display altered development of the hippocampus, which could be linked to their anxiety-like phenotype. Maternal inactivation of fmr1, like its inactivation in the offspring, results in a hyperactivity-like condition and is associated with receptor alterations in the striatum. These data indicate a high sensitivity of the offspring to maternal mutations and suggest that maternal genotype effects can increase the impact of genetic risk factors in a population by increasing the risk of the genetically normal offspring as well as by enhancing the effects of offspring mutations.


Genes, Brain and Behavior | 2016

Programming social behavior by the maternal fragile X protein.

Bojana Zupan; Ali Sharma; A. Frazier; Shifra S. Klein; Miklós Tóth

The developing fetus and neonate are highly sensitive to maternal environment. Besides the well‐documented effects of maternal stress, nutrition and infections, maternal mutations, by altering the fetal, perinatal and/or early postnatal environment, can impact the behavior of genetically normal offspring. Mutation/premutation in the X‐linked FMR1 (encoding the translational regulator FMRP) in females, although primarily responsible for causing fragile X syndrome (FXS) in their children, may also elicit such maternal effects. We showed that a deficit in maternal FMRP in mice results in hyperactivity in the genetically normal offspring. To test if maternal FMRP has a broader intergenerational effect, we measured social behavior, a core dimension of neurodevelopmental disorders, in offspring of FMRP‐deficient dams. We found that male offspring of Fmr1+/− mothers, independent of their own Fmr1 genotype, exhibit increased approach and reduced avoidance toward conspecific strangers, reminiscent of ‘indiscriminate friendliness’ or the lack of stranger anxiety, diagnosed in neglected children and in patients with Aspergers and Williams syndrome. Furthermore, social interaction failed to activate mesolimbic/amygdala regions, encoding social aversion, in these mice, providing a neurobiological basis for the behavioral abnormality. This work identifies a novel role for FMRP that extends its function beyond the well‐established genetic function into intergenerational non‐genetic inheritance/programming of social behavior and the corresponding neuronal circuit. As FXS premutation and some psychiatric conditions that can be associated with reduced FMRP expression are more prevalent in mothers than full FMR1 mutation, our findings potentially broaden the significance of FMRP‐dependent programming of social behavior beyond the FXS population.


Results and problems in cell differentiation | 2012

Fmr-1 as an Offspring Genetic and a Maternal Environmental Factor in Neurodevelopmental Disease

Bojana Zupan; Miklós Tóth

Since fragile X syndrome (FXS) is a typical X-linked mendelian disorder, the protein product associated with the disease (FMRP) is absent or reduced not only in the affected individuals but, in case of full mutation, also in their mothers. Here, by using the mouse model of the disease, we provide evidence that hyperactivity, a typical symptom of FXS, is not wholly induced by the lack of Fmrp in mice but also occurs as a result of its reduced expression in their mother. Genetically wild-type offspring of mutant mothers also had hyperactivity, albeit less pronounced than the mutant offspring. However, other features of FXS reproduced in the mouse model, such as sensory hyperreactivity and seizure susceptibility, were exclusively associated with the absence of Fmrp in the offspring. These data indicate that fmr-1, the gene encoding Fmrp, can be both an offspring genetic and a maternal environmental factor in producing a neurodevelopmental condition.

Collaboration


Dive into the Bojana Zupan's collaboration.

Top Co-Authors

Avatar

Miklós Tóth

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Willie Mark

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

A. Auerbach

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge