Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bojiang Shen is active.

Publication


Featured researches published by Bojiang Shen.


The EMBO Journal | 1993

Two distinct functional sites of human interleukin 4 are identified by variants impaired in either receptor binding or receptor activation.

N Kruse; Bojiang Shen; S Arnold; Tony Hp; T Müller; Walter Sebald

Interleukin 4 (IL‐4) exerts a decisive role in the coordination of protective immune responses against parasites, particularly helminths. A disregulation of IL‐4 function is possibly involved in the genesis of allergic disease states. The search for important amino acid residues in human IL‐4 by mutational analysis of charged invariant amino acid positions identified two distinct functional sites in the 4‐helix‐bundle protein. Site 1 was marked by amino acid substitutions of the glutamic acid at position 9 in helix A and arginine at position 88 in helix C. Exchanges at both positions led to IL‐4 variants deficient in binding to the extracellular domain of the IL‐4 receptor (IL‐4R(ex)). In parallel, up to 1000‐fold increased concentrations of this type of variant were required to induce T‐cell proliferation and B‐cell CD23 expression. Site 2 was marked by amino acid exchanges in helix D at positions 121, 124 and 125 (arginine, tyrosine and serine respectively in the wild‐type). IL‐4 variants affected at site 2 exhibited partial agonist activity during T‐cell proliferation; however, they still bound with high affinity to IL‐4R(ex). [The generation of an IL‐4 antagonist by replacing tyrosine 124 with aspartic acid has been described before by Kruse et al. (1992) (EMBO J., 11, 3237‐3244)]. These findings indicate that IL‐4 functions by binding IL‐4R(ex) via site 1 which is constituted by residues on helices A and C.(ABSTRACT TRUNCATED AT 250 WORDS)


Journal of Cellular Biochemistry | 2009

The role of BMP‐7 in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in vitro

Bojiang Shen; Aiqun Wei; Shane Whittaker; Lisa A. Williams; Helen Tao; David Ma; Ashish D. Diwan

This study addresses the role of bone morphogenetic protein‐7 (BMP‐7) in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. BM MSCs were expanded and differentiated in the presence or absence of BMP‐7 in monolayer and three‐dimensional cultures. After 3 days of stimulation, BMP‐7 significantly inhibited MSC growth in expansion cultures. When supplemented in commonly used induction media for 7–21 days, BMP‐7 facilitated both chondrogenic and osteogenic differentiation of MSCs. This was evident by specific gene and protein expression analyses using real‐time PCR, Western blot, histological, and immunohistochemical staining. BMP‐7 supplementation appeared to enhance upregulation of lineage‐specific markers, such as type II and type IX collagens (COL2A1, COL9A1) in chondrogenic and secreted phosphoprotein 1 (SPP1), osteocalcin (BGLAP), and osterix (SP7) in osteogenic differentiation. BMP‐7 in the presence of TGF‐β3 induced superior chondrocytic proteoglycan accumulation, type II collagen, and SOX9 protein expression in alginate and pellet cultures compared to either factor alone. BMP‐7 increased alkaline phosphatase activity and dose‐dependently accelerated calcium mineralization of osteogenic differentiated MSCs. The potential of BMP‐7 to promote adipogenesis of MSCs was restricted under osteogenic conditions, despite upregulation of adipocyte gene expression. These data suggest that BMP‐7 is not a singular lineage determinant, rather it promotes both chondrogenic and osteogenic differentiation of MSCs by co‐ordinating with initial lineage‐specific signals to accelerate cell fate determination. BMP‐7 may be a useful enhancer of in vitro differentiation of BM MSCs for cell‐based tissue repair. J. Cell. Biochem. 109: 406–416, 2010.


Tissue Engineering Part A | 2009

BMP-2 Enhances TGF-β3–Mediated Chondrogenic Differentiation of Human Bone Marrow Multipotent Mesenchymal Stromal Cells in Alginate Bead Culture

Bojiang Shen; Aiqun Wei; Helen Tao; Ashish D. Diwan; David Ma

This study addresses synergistic effects of bone morphogenetic protein-2 (BMP-2) and transforming growth factor-beta3 (TGF-beta3) in the induction of chondrocytic differentiation of bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro for potential use in intervertebral disc (IVD) repair. Human BM MSCs encapsulated in alginate beads were induced to differentiate in serum-free medium containing BMP-2 and TGF-beta3. The expression of chondrocytic genes and proteins was analyzed by real-time PCR, western blot, histological, and immunohistochemical assays. This differentiation system showed a potent induction of chondrocytic phenotypes. The expression of chondrocytic markers, such as aggrecan (ACAN) and type II collagen (COL2A1), was upregulated at higher levels than using TGF-beta3 alone. Blocking BMP-2 by noggin completely suppressed BMP-2-enhanced gene and protein expression, confirming a crucial input of BMP-2 signaling in this differentiation process. Inhibition of extracellular signal-regulated kinases 1 and 2 signaling resulted in an increase in ACAN and COL2A1 gene expression, suggesting a negative regulatory role of this pathway. In conclusion, BMP-2 enhances TGF-beta3-mediated chondrogenesis of MSCs. The combination of BMP-2 and TGF-beta3 in alginate culture is superior to the standard differentiation method using TGF-beta alone. This potent induction system may provide an alternative cell source for IVD and cartilage regeneration in clinical practice.


Stem Cells and Development | 2008

Long-Term Serial Passage and Neuronal Differentiation Capability of Human Bone Marrow Mesenchymal Stem Cells

Melissa L. M. Khoo; Bojiang Shen; Helen Tao; David Ma

The development of methods to induce differentiation of human mesenchymal stem cells (hMSCs) has opened the possibility of using these cells in regenerative or reparative therapies. However, the low frequency of hMSCs in tissue means it is often necessary to expand these cells extensively in vitro. In this study, we evaluated the effects of long-term serial passage on the characteristics of bone marrow-derived hMSC populations. In addition, we examined the effect on subsequent hMSC neural differentiation ability, which has not been reported earlier. The hMSC population examined was found to maintain a stable phenotype during the first 6-8 passages of culture as assessed by proliferative ability, morphological appearance, and surface antigen, gene and protein expression, and also expressed pluripotency and neural lineage markers constitutively in the undifferentiated state. Long-term subcultivation neither resulted in spontaneous neural differentiation nor compromised the ability of hMSCs to develop toward an early neuronal fate. In addition, the transformation elicited in hMSC cultures in response to cytokine-based neuronal differentiation was examined by live cell microscopy. We demonstrated, for the first time, that the observed changes result from active and dynamic processes involving outgrowth and motility of cellular extensions, processes entirely distinct from the rapid epiphenomena of cytotoxicity and cytoskeleton disruption generated by chemical induction methods. Cytokine-induced differentiation of hMSCs was also associated with upregulation of early neural gene and protein expression. These findings support the neuronal differentiation capability of hMSCs, although further investigation is required to confirm the ability to attain a mature neuronal phenotype.


Clinical and Experimental Pharmacology and Physiology | 1999

Growth hormone as a cytokine

Michael J. Waters; Catherine A. Shang; Stuart N. Behncken; S. P. Tam; H. Li; Bojiang Shen; Peter E. Lobie

1. The growth hormone (GH) receptor was the first of the class 1 cytokine receptors to be cloned. It shares a number of structural characteristics with other family members and common signalling mechanisms based on common usage of the Janus kinase 2 (JAK2).


PLOS ONE | 2017

Culture-expanded allogenic adipose tissue-derived stem cells attenuate cartilage degeneration in an experimental rat osteoarthritis model

Li Mei; Bojiang Shen; Peixue Ling; Shaoying Liu; Jiajun Xue; Fuyan Liu; Huarong Shao; Jianying Chen; Aibin Ma; Xia Liu

Mesenchymal stem cell (MSC)-based cell therapy is a promising avenue for osteoarthritis (OA) treatment. In the present study, we evaluated the efficacy of intra-articular injections of culture-expanded allogenic adipose tissue-derived stem cells (ADSCs) for the treatment of anterior cruciate ligament transection (ACLT) induced rat OA model. The paracrine effects of major histocompatibility complex (MHC)-unmatched ADSCs on chondrocytes were investigated in vitro. Rats were divided into an OA group that underwent ACLT surgery and a sham-operated group that did not undergo ACLT surgery. Four weeks after surgery mild OA was induced in the OA group. Subsequently, the OA rats were randomly divided into ADSC and control groups. A single dose of 1 × 106 ADSCs suspended in 60 μL phosphate-buffered saline (PBS) was intra-articularly injected into the rats of the ADSC group. The control group received only 60 μL PBS. OA progression was evaluated macroscopically and histologically at 8 and 12 weeks after surgery. ADSC treatment did not cause any adverse local or systemic reactions. The degeneration of articular cartilage was significantly weaker in the ADSC group compared to that in the control group at both 8 and 12 weeks. Chondrocytes were co-cultured with MHC-unmatched ADSCs in trans-wells to assess the paracrine effects of ADSCs on chondrocytes. Co-culture with ADSCs counteracted the IL-1β-induced mRNA upregulation of the extracellular matrix-degrading enzymes MMP-3 and MMP-13 and the pro-inflammatory cytokines TNF-α and IL-6 in chondrocytes. Importantly, ADSCs increased the expression of the anti-inflammatory cytokine IL-10 in chondrocytes. The results of this study indicated that the intra-articular injection of culture-expanded allogenic ADSCs attenuated cartilage degeneration in an experimental rat OA model without inducing any adverse reactions. MHC-unmatched ADSCs protected chondrocytes from inflammatory factor-induced damage. The paracrine effects of ADSCs on OA chondrocytes are at least part of the mechanism by which ADSCs exert their therapeutic activity.


Translational pediatrics | 2014

Mesenchymal stem cells: potential application in intervertebral disc regeneration

Aiqun Wei; Bojiang Shen; Lisa A. Williams; Ashish D. Diwan

Chronic low back pain is one of the leading public health problems in developed countries. Degeneration of the intervertebral disc (IVD) is a major pathological process implicated in low back pain, which is characterized by cellular apoptosis and senescence with reduced synthesis of extracellular matrix (ECM). Currently, there is no clinical therapy targeting the reversal of disc degeneration. Recent advances in cellular and molecular biology have provided an exciting approach to disc regeneration that focuses on the delivery of viable cells to the degenerative disc. Adult mesenchymal stem cells (MSCs) are multipotent stem cells with self-renewal capacities and are able to differentiate into diverse specialized cell types, including chondrocyte lineages. The potential of stem cell therapy in disc degeneration is to repopulate the disc with viable cells capable of producing the ECM and restoring damaged tissue. The present literature review summarizes recent advances in basic research and clinical trials of MSCs to provide an outline of the key roles of MSCs therapies in disc repair. The review also discusses the controversies, challenges and therapeutic concepts for the future.


BMC Complementary and Alternative Medicine | 2013

An in vitro study of neuroprotective properties of traditional Chinese herbal medicines thought to promote healthy ageing and longevity.

Bojiang Shen; John Truong; Ray Helliwell; Suresh Govindaraghavan; Nikolaus J. Sucher

BackgroundAge is the leading risk factor for acute and chronic neurodegenerative diseases. The Shen Nong Ben Cao Jing, the oldest known compendium of Chinese materia media, lists herbal medicines that were believed to exert neither fast acting pharmacological effects nor discernible toxicity, but to promote general health and longevity. In modern terms, these herbal medicines could be considered as complementary health care products for prevention rather than treatment of diseases. In the present study, we examined whether a selection of 13 such herbal medicines exhibited neuroprotective activity.MethodsThe antioxidant capacity of the herbal extracts was determined using three non-cellular assays measuring the total phenol content (FCR assay), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity and oxygen radical absorbance capacity (ORAC). Cytotoxic effects of the herbal extracts were assayed in cultured mouse cortical neurons and their neuroprotective activities were studied using staurosporine-induced apoptosis of the cultured neurons.ResultsMost of the herbal extracts showed negligible toxic effects at 100 μg/ml. However, Polygonum multiflorum and Rhodiola rosea exhibited some neurotoxicity at this concentration. Extracts of Ganoderma lucidum, Glycyrrhiza glabra, Schizandra chinensis, and Polygonum cuspidatum inhibited staurosporine-induced apoptosis by 30 – 50% in a dose-dependent manner. The neuroprotective effects of Polygonum cuspidatum were predominantly due to its major ingredient, resveratrol. The effective herbal extracts showed various levels of reactive oxygen species (ROS) scavenging capacity, which was significantly correlated with their neuro- protective activity. However, P. multiflorum and R. rosea extracts proved to be the exception as they exhibited a high level of antioxidant capacity, but did not exhibit neuroprotective effects in cell-based assay.ConclusionsThis in vitro study provides evidence for neuroprotective activity of some Chinese herbal medicines traditionally used to promote healthy ageing and longevity. Our results provide a justification for further study of these herbal extracts in neurodegenerative animal models to assess their safety and effectiveness as a basis for subsequent clinical trials. These herbal medicines might potentially offer a novel preemptive neuroprotective approach in neurodegenerative diseases and might be developed for use in persons at risk.


Orthopedic Research and Reviews | 2010

Hyaluronan : its potential application in intervertebral disc regeneration

Bojiang Shen; Aiqun Wei; Divya Bhargav; Thomas Kishen; Ashish D. Diwan

Hyaluronan (HA) is a ubiquitous component of extracellular matrix in human tissues with diverse functions in skeletal biology. The biophysical properties of HA, such as high viscosity, elasticity and highly negative charge, make it useful in various therapeutic procedures. Although intra-articular administration of HA has been extensively used in the management of osteoarthritis (OA), there is a paucity of data on the clinical application of HA in intervertebral disc repair. This review discusses the biology and signaling mechanisms of HA, the patho- physiology of disc degeneration and summarises current evidence relating to the role of HA in cell phenotype maintenance, differentiation of chondrocytes, intervertebral disc cells and bone marrow stromal cells, and its application in tissue engineering. Based on recent advances in the clinical outcomes of OA treatment, HA has demonstrated potential as a bio-polymer filler, therapeutic agent and cell carrier in the management of intervertebral disc degeneration.


The Journal of Steroid Biochemistry and Molecular Biology | 2016

Expression and functional roles of estrogen receptor GPR30 in human intervertebral disc.

Aiqun Wei; Bojiang Shen; Lisa A. Williams; Divya Bhargav; Feng Yan; Beng H. Chong; Ashish D. Diwan

Estrogen withdrawal, a characteristic of female aging, is associated with age-related intervertebral disc (IVD) degeneration. The function of estrogen is mediated by two classic nuclear receptors, estrogen receptor (ER)-α and -β, and a membrane bound G-protein-coupled receptor 30 (GPR30). To date, the expression and function of GPR30 in human spine is poorly understood. This study aimed to evaluate GPR30 expression in IVD, and its role in estrogen-related regulation of proliferation and apoptosis of disc nucleus pulposus (NP) cells. GPR30 expression was examined in 30 human adult NP and 9 fetal IVD. Results showed that GPR30 was expressed in NP cells at both mRNA and protein levels. In human fetal IVD, GPR30 protein was expressed in the NP at 12-14 weeks gestation, but was undetectable at 8-11 weeks. The effect of 17β-estradiol (E2) on GPR30-mediated proliferation and interleukin-1β (IL-1β)-induced apoptosis of NP cells was investigated. Cultured NP cells were treated with or without E2, GPR30 antagonist G36, and ER antagonist ICI 182,780. NP cell viability was tested by MTS assay. Apoptosis was determined by flow cytometry using fluorescence labeled annexin-V, TUNEL assay and immumnocytochemical staining of activated caspase-3. E2 enhanced cell proliferation and prevented IL-1β-induced cell death, but the effect was partially blocked by G36 and completely abrogated by a combination of ICI 182,780 and G36. This study demonstrates that GPR30 is expressed in human IVD to transmit signals triggering E2-induced NP cell proliferation and protecting against IL-1β-induced apoptosis. The effects of E2 on NP cells require both GPR30 and classic estrogen receptors.

Collaboration


Dive into the Bojiang Shen's collaboration.

Top Co-Authors

Avatar

Aiqun Wei

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Ashish D. Diwan

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Lisa A. Williams

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Divya Bhargav

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

David Ma

St. Vincent's Health System

View shared research outputs
Top Co-Authors

Avatar

Helen Tao

St. Vincent's Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge