Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bong-Hyun Jun is active.

Publication


Featured researches published by Bong-Hyun Jun.


Small | 2010

Multifunctional Silver‐Embedded Magnetic Nanoparticles as SERS Nanoprobes and Their Applications

Bong-Hyun Jun; Mi Suk Noh; Jaeyun Kim; Gunsung Kim; Homan Kang; Min Soo Kim; Young-Tae Seo; Jongho Baek; Jong-Ho Kim; J. Park; Seongyong Kim; Yong-Kweon Kim; Taeghwan Hyeon; Myung-Haing Cho; Dae Hong Jeong; Yoon-Sik Lee

In this study, surface-enhanced Raman spectroscopy (SERS)-encoded magnetic nanoparticles (NPs) are prepared and utilized as a multifunctional tagging material for cancer-cell targeting and separation. First, silver-embedded magnetic NPs are prepared, composed of an 18-nm magnetic core and a 16-nm-thick silica shell with silver NPs formed on the surface. After simple aromatic compounds are adsorbed on the silver-embedded magnetic NPs, they are coated with silica to provide them with chemical and physical stability. The resulting silica-encapsulated magnetic NPs (M-SERS dots) produce strong SERS signals and have magnetic properties. In a model application as a tagging material, the M-SERS dots are successfully utilized for targeting breast-cancer cells (SKBR3) and floating leukemia cells (SP2/O). The targeted cancer cells can be easily separated from the untargeted cells using an external magnetic field. The separated targeted cancer cells exhibit a Raman signal originating from the M-SERS dots. This system proves to be an efficient tool for separating targeted cells. Additionally, the magnetic-field-induced hot spots, which can provide a 1000-times-stronger SERS intensity due to aggregation of the NPs, are studied.


Organic Letters | 2008

Macroporous Polystyrene-Supported Palladium Catalyst Containing a Bulky N-Heterocyclic Carbene Ligand for Suzuki Reaction of Aryl Chlorides

Dong-Ho Lee; Jong-Ho Kim; Bong-Hyun Jun; Homan Kang; J. Park; Yoon-Sik Lee

Macroporous polystyrene (MPS)-supported 1-mesitylimidazolium chloride resin was prepared by reacting macroporous chloromethyl polystyrene with 1-mesitylimidazole as a supported N-heterocyclic carbene (NHC) precursor for the immobilization of a palladium catalyst. This MPS-supported NHC precursor readily formed a stable complex with Pd(OAc)2, which effectively catalyzed the Suzuki reaction of aryl iodide and bromides at room temperature and even aryl chlorides at elevated temperatures (100 degrees C). This catalyst showed reusability in the Suzuki reaction of aryl bromide.


Nanomedicine: Nanotechnology, Biology and Medicine | 2011

Surface-enhanced Raman scattering-active nanostructures and strategies for bioassays

Bong-Hyun Jun; Gunsung Kim; Mi Suk Noh; Homan Kang; Yong-Kweon Kim; Myung-Haing Cho; Dae Hong Jeong; Yoon-Sik Lee

Surface-enhanced Raman scattering (SERS) techniques offer a number of advantages in molecular detection and analysis, particularly in terms of the multiplex detection of biomolecules. So far, many new SERS-based substrates and analytical techniques have been reported. For easy understanding, various SERS techniques are classified into the following four categories: adsorption-mediated direct detection; antibody- or ligand-mediated direct detection; binding catalyzed indirect detection; and tag-based indirect detection. Among these, recent successes of SERS tagging/encoding (nano/micro) materials and detection methods are highlighted, including our recent works. Some novel SERS-based strategies for the detection of several biological molecules are also introduced.


Analytical Biochemistry | 2009

Protein separation and identification using magnetic beads encoded with surface-enhanced Raman spectroscopy

Bong-Hyun Jun; Mi Suk Noh; Gunsung Kim; Homan Kang; Jong-Ho Kim; Woo-Jae Chung; Min Soo Kim; Yong-Kweon Kim; Myung-Haing Cho; Dae Hong Jeong; Yoon-Sik Lee

This article presents a prototype of a surface-enhanced Raman spectroscopy (SERS)-encoded magnetic bead of 8mum diameter. The core part of the bead is composed of a magnetic nanoparticle (NP)-embedded sulfonated polystyrene bead. The outer part of the bead is embedded with Ag NPs on which labeling molecules generating specific SERS bands are adsorbed. A silica shell is fabricated for further bioconjugation and protection of SERS signaling. Benzenethiol, 4-mercaptotoluene, 2-naphthalenethiol, and 4-aminothiophenol are used as labeling molecules. The magnetic SERS beads are used as substrates for protein sensing and screening with easy handling. As a model application, streptavidin-bound magnetic SERS beads are used to illustrate selective separation in a flow cytometry system, and the screened beads are spectrally recognized by Raman spectroscopy. The proposed magnetic SERS beads are likely to be used as a versatile solid support for protein sensing and screening in multiple assay technology.


Biomaterials | 2009

Magnetic surface-enhanced Raman spectroscopic (M-SERS) dots for the identification of bronchioalveolar stem cells in normal and lung cancer mice

Mi Suk Noh; Bong-Hyun Jun; Seongyong Kim; Homan Kang; Min-Ah Woo; Arash Minai-Tehrani; Ji-Eun Kim; Jaeyun Kim; Joo-Young Park; Hwang-Tae Lim; Se-Chang Park; Taeghwan Hyeon; Yong-Kweon Kim; Dae Hong Jeong; Yoon-Sik Lee; Myung-Haing Cho

Bronchioalveolar stem cells (BASCs) play an important role in the development of cancer. To study the characterization of BASCs, their isolation and purification are important. However, the cells are very rare in tissues and the available methods of isolating them are limited. The current study was performed to isolate BASCs in the murine lung using magnetic nanoparticle-based surface-enhanced Raman spectroscopic dots (M-SERS Dots). We used K-ras(LA1) mice, a laboratory animal model of non-small cell lung cancer of human, and C57BL/6 mice having the same age as a control. We compared the BASCs between 2 species by FACS analysis with 4 markers of BASCs, CCSP, SP-C, CD34, and Sca-1. We found that BASCs were more abundant in the K-ras(LA1) mice than in the C57BL/6 mice. Also, the M-SERS Dot-mediated positive selection of the CD34(pos) cells enabled the BASCs to be enriched to an approximately 4- to 5-fold higher level than that in the case without pre-separation. In summary, our study demonstrates the potential of using M-SERS Dots as a sorting system with very effective isolation of BASCs and multiplex targeting probe, showing that they may play an effective role in the study of BASCs in the future.


Molecules | 2012

Fluorescence-Based Multiplex Protein Detection Using Optically Encoded Microbeads

Bong-Hyun Jun; Homan Kang; Yoon-Sik Lee; Dae Hong Jeong

Potential utilization of proteins for early detection and diagnosis of various diseases has drawn considerable interest in the development of protein-based multiplex detection techniques. Among the various techniques for high-throughput protein screening, optically-encoded beads combined with fluorescence-based target monitoring have great advantages over the planar array-based multiplexing assays. This review discusses recent developments of analytical methods of screening protein molecules on microbead-based platforms. These include various strategies such as barcoded microbeads, molecular beacon-based techniques, and surface-enhanced Raman scattering-based techniques. Their applications for label-free protein detection are also addressed. Especially, the optically-encoded beads such as multilayer fluorescence beads and SERS-encoded beads are successful for generating a large number of coding.


Biomaterials | 2015

Target-specific near-IR induced drug release and photothermal therapy with accumulated Au/Ag hollow nanoshells on pulmonary cancer cell membranes.

Mi Suk Noh; Somin Lee; Homan Kang; Jin-Kyoung Yang; Hyunmi Lee; Doyk Hwang; Jong Woo Lee; Sinyoung Jeong; Yoonjeong Jang; Bong-Hyun Jun; Dae Hong Jeong; Seong Keun Kim; Yoon-Sik Lee; Myung-Haing Cho

Au/Ag hollow nanoshells (AuHNSs) were developed as multifunctional therapeutic agents for effective, targeted, photothermally induced drug delivery under near-infrared (NIR) light. AuHNSs were synthesized by galvanic replacement reaction. We further conjugated antibodies against the epidermal growth factor receptor (EGFR) to the PEGylated AuHNS, followed by loading with the antitumor drug doxorubicin (AuHNS-EGFR-DOX) for lung cancer treatment. AuHNSs showed similar photothermal efficiency to gold nanorods under optimized NIR laser power. The targeting of AuHNS-EGFR-DOX was confirmed by light-scattering images of A549 cells, and doxorubicin release from the AuHNSs was evaluated under low pH and NIR-irradiated conditions. Multifunctional AuHNS-EGFR-DOX induced photothermal ablation of the targeted lung cancer cells and rapid doxorubicin release following irradiation with NIR laser. Furthermore, we evaluated the effectiveness of AuHNS-EGFR-DOX drug delivery by comparing two drug delivery methods: receptor-mediated endocytosis and cell-surface targeting. Accumulation of the AuHNS-EGFR-DOX on the cell surfaces by targeting EGFR turned out to be more effective for lung cancer treatments than uptake of AuHNS-EGFR-DOX. Taken together, our data suggest a new and optimal method of NIR-induced drug release via the accumulation of targeted AuHNS-EGFR-DOX on cancer cell membranes.


Scientific Reports | 2015

Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics

Sinyoung Jeong; Yong-Il Kim; Homan Kang; Gunsung Kim; Myeong Geun Cha; Hyejin Chang; Kyung Oh Jung; Young-Hwa Kim; Bong-Hyun Jun; Do Won Hwang; Yun-Sang Lee; Hyewon Youn; Yoon-Sik Lee; Keon Wook Kang; Dong Soo Lee; Dae Hong Jeong

Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.


Colloids and Surfaces B: Biointerfaces | 2013

Fabrication of biofunctional stents with endothelial progenitor cell specificity for vascular re-endothelialization.

Woo-Hyun Lim; San Kyeong; Won-Seok Choe; Hyo-Soo Kim; Bong-Hyun Jun; Yoon-Sik Lee

Endothelial progenitor cells (EPCs) have been identified as a crucial factor for re-endothelialization after stenting, resulting in the prevention of stent thrombosis and neointimal hyperplasia. Because EPCs can be introduced by antibody-antigen interactions, the suitable choice of antibody and the biocompatible surface modification technology including antibody immobilization are essential for developing an EPC-capturing stent. In this study, we fabricated a biofunctional stent with EPC specificity by grafting a hydrophilic polymer and consecutively immobilizing the antibody against vascular endothelial cadherin (VE-cadherin) which is one of the specific EPC surface markers. The surface of a stainless steel stent was sequentially modified by acid-treatment, silanization and covalent attachment of polymers not only to improve biocompatibility but also to introduce functional groups on the stent surface. The surface-modified stent immobilized anti-VE-cadherin antibodies, and the EPCs were remarkably captured whereas THP-1s, human acute monocytic leukemia cells, were not adsorbed on the stent. Furthermore, we confirmed that the recruited EPCs developed the endothelial cell layers on the antibody-conjugated stent. These positive in vitro results will encourage the extensive application of biofunctional surface modification technology for a variety of medical devices.


Journal of Biochemistry and Molecular Biology | 2013

Binding model for eriodictyol to Jun-N terminal kinase and its anti-inflammatory signaling pathway.

Eunjung Lee; Ki-Woong Jeong; Areum Shin; Bonghwan Jin; Hum Nath Jnawali; Bong-Hyun Jun; Jee-Young Lee; Yong-Seok Heo; Yangmee Kim

The anti-inflammatory activity of eriodictyol and its mode of action were investigated. Eriodictyol suppressed tumor necrosis factor (mTNF)-α, inducible nitric oxide synthase (miNOS), interleukin (mIL)-6, macrophage inflammatory protein (mMIP)-1, and mMIP-2 cytokine release in LPS-stimulated macrophages. We found that the anti-inflammatory cascade of eriodictyol is mediated through the Toll-like Receptor (TLR)4/CD14, p38 mitogen-activated protein kinases (MAPK), extracellular-signalregulated kinase (ERK), Jun-N terminal kinase (JNK), and cyclooxygenase (COX)-2 pathway. Fluorescence quenching and saturation-transfer difference (STD) NMR experiments showed that eriodictyol exhibits good binding affinity to JNK, 8.79 × 105 M-1. Based on a docking study, we propose a model of eriodictyol and JNK binding, in which eriodictyol forms 3 hydrogen bonds with the side chains of Lys55, Met111, and Asp169 in JNK, and in which the hydroxyl groups of the B ring play key roles in binding interactions with JNK. Therefore, eriodictyol may be a potent anti-inflammatory inhibitor of JNK. [BMB Reports 2013; 46(12): 594-599]

Collaboration


Dive into the Bong-Hyun Jun's collaboration.

Top Co-Authors

Avatar

Yoon-Sik Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Dae Hong Jeong

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Homan Kang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

San Kyeong

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sinyoung Jeong

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge