Bong Ki Min
Yeungnam University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bong Ki Min.
ACS Applied Materials & Interfaces | 2016
G.R. Dillip; Arghya Narayan Banerjee; Veettikkunnu Chandran Anitha; Borelli Deva Prasad Raju; Sang Woo Joo; Bong Ki Min
Zinc oxide (ZnO) nanoparticles (NPs) anchored to carbon nanofiber (CNF) hybrids were synthesized using a facile coprecipitation method. This report demonstrates an effective strategy to intrinsically improve the conductivity and supercapacitive performance of the hybrids by inducing oxygen vacancies. Oxygen deficiency-related defect analyses were performed qualitatively as well as quantitatively using Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. All of the analyses clearly indicate an increase in oxygen deficiencies in the hybrids with an increase in the vacuum-annealing temperature. The nonstoichiometric oxygen vacancy is mainly induced via the migration of the lattice oxygen into interstitial sites at elevated temperature (300 °C), followed by diffusion into the gaseous phase with further increase in the annealing temperature (600 °C) in an oxygen-deficient atmosphere. This induction of oxygen vacancy is corroborated by diffuse reflectance spectroscopy, which depicts the oxygen-vacancy-induced bandgap narrowing of the ZnO NPs within the hybrids. At a current density of 3 A g(-1), the hybrid electrode exhibited higher energy density (119.85 Wh kg(-1)) and power density (19.225 kW kg(-1)) compared to a control ZnO electrode (48.01 Wh kg(-1) and 17.687 kW kg(-1)). The enhanced supercapacitive performance is mainly ascribed to the good interfacial contact between CNF and ZnO, high oxygen deficiency, and fewer defects in the hybrid. Our results are expected to provide new insights into improving the electrochemical properties of various composites/hybrids.
Nanotechnology | 2015
V.C. Anitha; Jin-Hyung Lee; Jintae Lee; Arghya Narayan Banerjee; Sang Woo Joo; Bong Ki Min
Titania (TiO2) nanotube arrays (TNAs) with different pore diameters (140 - 20 nm) are fabricated via anodization using hydrofluoric acid (HF) containing ethylene glycol (EG) by changing the HF-to-EG volume ratio and the anodization voltage. To evaluate the effects of different pore diameters of TiO2 nanotubes on bacterial biofilm formation, Shewanella oneidensis (S. oneidensis) MR-1 cells and a crystal-violet biofilm assay are used. The surface roughness and wettability of the TNA surfaces as a function of pore diameter, measured via the contact angle and AFM techniques, are correlated with the controlled biofilm formation. Biofilm formation increases with the decreasing nanotube pore diameter, and a 20 nm TiO2 nanotube shows the maximum biofilm formation. The measurements revealed that 20 nm surfaces have the least hydrophilicity with the highest surface roughness of ∼17 nm and that they show almost a 90% increase in the effective surface area relative to the 140 nm TNAs, which stimulate the cells more effectively to produce the pili to attach to the surface for more biofilm formation. The results demonstrate that bacterial cell adhesion (and hence, biofilm formation) can effectively be controlled by tuning the roughness and wettability of TNAs via controlling the pore diameters of TNA surfaces. This biofilm formation as a function of the surface properties of TNAs can be a potential candidate for both medical applications and as electrodes in microbial fuel cells.
ChemPhysChem | 2015
G.R. Dillip; Arghya Narayan Banerjee; V.C. Anitha; Sang Woo Joo; Bong Ki Min; Sandesh Y. Sawant; Moo Hwan Cho
A facile three-step co-precipitation method is developed to synthesize graphitic carbon nanofibers (CNFs) decorated with ZnO nanoparticles (NPs). By interchanging intermediate steps of the reaction processes, two kinds of nanohybrids are fabricated with stark morphological and physicochemical differences. The morphologies differ because of the different chemical environments of the NP/nanocluster formation. The hybrid with larger and non-uniform ZnO nanocluster size is formed in liquid phase and resulted in considerable interfacial defects that deteriorate the charge-transfer properties. The hybrid with smaller and uniform ZnO NPs was formed in a dry solid phase and produced near-defect-free interfaces, leading to efficient charge transfer for superior photocatalytic performance. The results broaden the understanding of the anchoring/bonding mechanism in ZnO/CNF hybrid formation and may facilitate further development of more effective exfoliation strategies for the preparation of high-performance composites/hybrids.
Scientific Reports | 2015
Jae Kap Lee; Sohyung Lee; Yong Il Kim; Jin Gyu Kim; Bong Ki Min; Kyung Il Lee; Yeseul Park; P. John
In this paper, we demonstrate the seeded growth of graphene under a plasma chemical vapor deposition condition. First, we fabricate graphene nanopowders (~5 nm) by ball-milling commercial multi-wall carbon nanotubes. The graphene nanoparticles were subsequently subject to a direct current plasma generated in a 100 Torr 10%CH4 - 90%H2 gas mixture. The plasma growth enlarged, over one hour, the nuclei to graphene sheets larger than one hundred nm2 in area. Characterization by electron and X-ray diffraction, high-resolution transmission electron microscopy images provide evidence for the presence of monolayer graphene sheets.
Materials | 2016
Mun-Hwan Lee; Bong Ki Min; Jun Son; Tae-Yub Kwon
This in vitro study investigated whether different storage conditions of plasma-treated zirconia specimens affect the shear bond strength of veneering porcelain. Zirconia plates were treated with a non-thermal atmospheric argon plasma (200 W, 600 s). Porcelain veneering (2.38 mm in diameter) was performed immediately (P-I) or after 24 h storage in water (P-W) or air (P-A) on the treated surfaces (n = 10). Untreated plates were used as the control. Each group was further divided into two subgroups according to the application of a ceramic liner. All veneered specimens underwent a shear bond strength (SBS) test. In the X-ray photoelectron spectroscopy (XPS) analysis, the oxygen/carbon ratios of the plasma-treated groups increased in comparison with those of the control group. When a liner was not used, the three plasma-treated groups showed significantly higher SBS values than the control group (p < 0.001), although group P-A exhibited a significantly lower value than the other two groups (p < 0.05). The liner application negatively affected bonding in groups P-I and P-W (p < 0.05). When the veneering step was delayed after plasma treatment of zirconia, storage of the specimens in water was effective in maintaining the cleaned surfaces for optimal bonding with the veneering porcelain.
Materials | 2016
Hae Ri Kim; Seong-Ho Jang; Young Kyung Kim; Jun Sik Son; Bong Ki Min; Kyo-Han Kim; Tae-Yub Kwon
The microstructures and mechanical properties of cobalt-chromium (Co-Cr) alloys produced by three CAD/CAM-based processing techniques were investigated in comparison with those produced by the traditional casting technique. Four groups of disc- (microstructures) or dumbbell- (mechanical properties) specimens made of Co-Cr alloys were prepared using casting (CS), milling (ML), selective laser melting (SLM), and milling/post-sintering (ML/PS). For each technique, the corresponding commercial alloy material was used. The microstructures of the specimens were evaluated via X-ray diffractometry, optical and scanning electron microscopy with energy-dispersive X-ray spectroscopy, and electron backscattered diffraction pattern analysis. The mechanical properties were evaluated using a tensile test according to ISO 22674 (n = 6). The microstructure of the alloys was strongly influenced by the manufacturing processes. Overall, the SLM group showed superior mechanical properties, the ML/PS group being nearly comparable. The mechanical properties of the ML group were inferior to those of the CS group. The microstructures and mechanical properties of Co-Cr alloys were greatly dependent on the manufacturing technique as well as the chemical composition. The SLM and ML/PS techniques may be considered promising alternatives to the Co-Cr alloy casting process.
Nanotechnology | 2015
V.C. Anitha; Arghya Narayan Banerjee; Sang Woo Joo; Bong Ki Min
One-dimensional (1D) and two-dimensional (2D) titania/titanate nanostructures are fabricated directly on a self-source metallic titanium (Ti) surface via in situ surface re-construction of a Ti substrate using potassium hydroxide (KOH) under a hydrothermal (HT) condition. The effect of temperature and the concentration of KOH on the variations in morphology and titania-to-titanate phase changes are studied and explained in detail. A growth model is proposed for the formation process of the platelet-to-nanorod conversion mechanism. The field emission (FE) properties of titania/titanate nanostructures are studied, and the effects of the morphologies (such as 1D nanorods, 2D nanoplatelets, and a mixture of 1D nanorods and 2D platelets) on the FE properties of the samples are investigated. The samples depict a reasonable low turn-on field and emission stability. The FE mechanism is observed to follow standard Fowler-Nordheim (FN) electron tunneling. The geometrical field enhancement factor (β) is measured to be very high, and is compared with theoretical values calculated from various existing models to explore the feasibility of these models. The surface modification of metallic Ti by a simple non-lithographic bottom-up method and the low-macroscopic FE properties can provide a potential alternative to field emission displays for low-power panel technology.
Acta Odontologica Scandinavica | 2014
Young Kyung Kim; Bong Ki Min; Jun Sik Son; Kyo-Han Kim; Tae-Yub Kwon
Abstract Objective. This study investigated the effect of different drying methods of dentin surface on the bonding efficacy of self-adhesive resin cements (SRCs). Materials and methods. Three SRCs (RelyX U200, RU; Maxcem Elite, ME; and BisCem, BC) and one resin-modified glass ionomer cement (RelyX Luting 2, RL) were used. The characteristics of the materials were evaluated using thermogravimetric analysis and surface roughness and contact angle measurements. Human dentin surfaces were finished with 600-grit silicon carbide paper and assigned to three groups according to these drying methods: ethanol dehydration, drying by waiting for 10 s after blot-drying and blot-drying. The four cements were used for luting composite overlays to the dried dentin. After 24 h storage at 37°C and 100% relative humidity, stick-shaped specimens with a cross-sectional area of 0.8 mm2 were prepared and stressed to failure in tension at a crosshead speed of 0.5 mm/min (n = 27). Failure modes of fractured specimens were assessed by optical and scanning electron microscopy. Results. RL was the most hydrophilic, followed by BC and ME and then RU. All the luting cements luted to ethanol-dehydrated dentin showed zero bond strengths. For the three SRCs, drying by waiting produced higher microtensile bond strengths than blot-drying. RU showed the best bonding performance in the above two dentin conditions. RL showed significantly higher bond strength in blot-drying condition than in drying-by-waiting (p < 0.001). Conclusions. This study suggests that dentin surface moisture has a crucial effect on the bond strength of SRCs.
Small | 2014
Jae Kap Lee; Sohyung Lee; Jin Gyu Kim; Bong Ki Min; Yong Il Kim; Kyung Il Lee; Kay Hyeok An; P. John
Evidence is presented in this paper that certain single-wall carbon nanotubes are not seamless tubes, but rather adopt a graphene helix resulting from the spiral growth of a nano-graphene ribbon. The residual traces of the helices are confirmed by high-resolution transmission electron microscopy and atomic force microscopy. The analysis also shows that the tubular graphene material may exhibit a unique armchair structure and the chirality is not a necessary condition for the growth of carbon nanotubes. The description of the structure of the helical carbon nanomaterials is generalized using the plane indices of hexagonal space groups instead of using chiral vectors. It is also proposed that the growth model, via a graphene helix, results in a ubiquitous structure of single-wall carbon nanotubes.
Journal of Adhesion Science and Technology | 2016
Sung-Min Kwon; Bong Ki Min; Jun Sik Son; Kyo-Han Kim; Tae-Yub Kwon
Abstract The purpose of this study was to investigate the efficacy of novel mercapto silane-based experimental primers on the resin bonding and its durability to dental noble metal–ceramic alloys in comparison with that of commercial primers. Disc-shaped gold–platinum–palladium, gold–palladium–silver, and palladium–silver alloy specimens were used as the adherents after air-abrasion. One of three commercial primers (M.L. Primer, Single Bond Universal, and All-Bond Universal) and two experimental primer systems (2-step application with γ-mercaptopropyltrimethoxysilane and then γ-methacryloxypropyltrimethoxysilane and a blend of the two silanes) was applied to each alloy. Resin cylinders with a diameter of 2.38 mm were bonded to the surfaces and light-cured. All bonded specimens were stored in water at 37 °C for 24 h and then half of them additionally water immersed for 7 days (37 °C) and then thermocycled 10,000 times before the shear bond strength test (n = 10). The surface energy parameters for unprimed and primed alloy surfaces were calculated based on the contact angle measurements. The bond strength data were non-parametrically analyzed at α = 0.05. Regardless of the alloy type, both mercapto silane systems equally and consistently showed superior bonding durability to the commercial primers. Pearson correlation analyses revealed moderate to strong, significant correlations between the surface energy parameters and the bond strength values. The two novel mercapto silane systems are a promising alternative for enhanced durability of resin bonding to dental noble metal–ceramic alloys.