Boniface B. Kayang
University of Ghana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Boniface B. Kayang.
BMC Genomics | 2006
Boniface B. Kayang; Valerie Fillon; Miho Inoue-Murayama; Mitsuru Miwa; Sophie Leroux; Katia Feve; J. L. Monvoisin; Frédérique Pitel; Matthieu Vignoles; Céline Mouilhayrat; Catherine Beaumont; Shin-ichi Ito; Francis Minvielle; Alain Vignal
BackgroundBy comparing the quail genome with that of chicken, chromosome rearrangements that have occurred in these two galliform species over 35 million years of evolution can be detected. From a more practical point of view, the definition of conserved syntenies helps to predict the position of genes in quail, based on information taken from the chicken sequence, thus enhancing the utility of this species in biological studies through a better knowledge of its genome structure. A microsatellite and an Amplified Fragment Length Polymorphism (AFLP) genetic map were previously published for quail, as well as comparative cytogenetic data with chicken for macrochromosomes. Quail genomics will benefit from the extension and the integration of these maps.ResultsThe integrated linkage map presented here is based on segregation analysis of both anonymous markers and functional gene loci in 1,050 quail from three independent F2 populations. Ninety-two loci are resolved into 14 autosomal linkage groups and a Z chromosome-specific linkage group, aligned with the quail AFLP map. The size of linkage groups ranges from 7.8 cM to 274.8 cM. The total map distance covers 904.3 cM with an average spacing of 9.7 cM between loci. The coverage is not complete, as macrochromosome CJA08, the gonosome CJAW and 23 microchromosomes have no marker assigned yet. Significant sequence identities of quail markers with chicken enabled the alignment of the quail linkage groups on the chicken genome sequence assembly. This, together with interspecific Fluorescence In Situ Hybridization (FISH), revealed very high similarities in marker order between the two species for the eight macrochromosomes and the 14 microchromosomes studied.ConclusionIntegrating the two microsatellite and the AFLP quail genetic maps greatly enhances the quality of the resulting information and will thus facilitate the identification of Quantitative Trait Loci (QTL). The alignment with the chicken chromosomes confirms the high conservation of gene order that was expected between the two species for macrochromosomes. By extending the comparative study to the microchromosomes, we suggest that a wealth of information can be mined in chicken, to be used for genome analyses in quail.
BMC Genomics | 2005
Francis Minvielle; Boniface B. Kayang; Miho Inoue-Murayama; Mitsuru Miwa; Alain Vignal; David Gourichon; André Neau; Jean Louis Monvoisin; Shin-ichi Ito
BackgroundThe Japanese quail (Coturnix japonica) is both an animal model in biology and a commercial bird for egg and meat production. Modern research developments with this bird, however, have been slowed down by the limited information that is available on the genetics of the Japanese quail. Recently, quail genetic maps with microsatellites and AFLP have been produced which open the way to comparative works with the chicken (Gallus gallus), and to QTL detection for a variety of traits. The purpose of this work was to detect for the first time QTL for commercial traits and for more basic characters in an F2 experiment with 434 female quail, and to compare the nature and the position of the detected QTL with those from the first chicken genome scans carried out during the last few years.ResultsGenome-wide significant or suggestive QTL were found for clutch length, body weight and feed intake on CJA01, age at first egg and egg number on CJA06, and eggshell weight and residual feed intake on CJA20, with possible pleiotropy for the QTL affecting body weight and feed intake, and egg number and age at first egg. A suggestive QTL was found for tonic immobility on CJA01, and chromosome-wide significant QTL for body temperature were detected on CJA01 and CJA03. Other chromosome-wide significant QTL were found on CJA02, CJA05, CJA09 and CJA14. Parent-of-origin effects were found for QTL for body weight and feed intake on CJA01.ConclusionDespite its limited length, the first quail microsatellite map was useful to detect new QTL for rarely reported traits, like residual feed intake, and to help establish some correspondence between the QTL for feed intake, body weight and tonic immobility detected in the present work and those reported on GGA01 in the chicken. Further comparative work is now possible in order to better estimate and understand the genetic similarities and differences of these two Phasianidae species.
BMC Genetics | 2012
Grégoire Leroy; Boniface B. Kayang; Issaka Youssao; Chia Valentine Yapi-Gnaore; Richard Osei-Amponsah; N’Goran E. Loukou; J.C. Fotsa; Khalid Benabdeljelil; Bertrand Bed’Hom; Michèle Tixier-Boichard; Xavier Rognon
BackgroundChickens represent an important animal genetic resource for improving farmers’ income in Africa. The present study provides a comparative analysis of the genetic diversity of village chickens across a subset of African countries. Four hundred seventy-two chickens were sampled in 23 administrative provinces across Cameroon, Benin, Ghana, Côte d’Ivoire, and Morocco. Geographical coordinates were recorded to analyze the relationships between geographic distribution and genetic diversity. Molecular characterization was performed with a set of 22 microsatellite markers. Five commercial lines, broilers and layers, were also genotyped to investigate potential gene flow. A genetic diversity analysis was conducted both within and between populations.ResultsHigh heterozygosity levels, ranging from 0.51 to 0.67, were reported for all local populations, corresponding to the values usually found in scavenging populations worldwide. Allelic richness varied from 2.04 for a commercial line to 4.84 for one population from Côte d’Ivoire. Evidence of gene flow between commercial and local populations was observed in Morocco and in Cameroon, which could be related to long-term improvement programs with the distribution of crossbred chicks. The impact of such introgressions seemed rather limited, probably because of poor adaptation of exotic birds to village conditions, and because of the consumers’ preference for local chickens. No such gene flow was observed in Benin, Ghana, and Côte d’Ivoire, where improvement programs are also less developed. The clustering approach revealed an interesting similarity between local populations found in regions sharing high levels of precipitation, from Cameroon to Côte d’Ivoire. Restricting the study to Benin, Ghana, and Côte d’Ivoire, did not result in a typical breed structure but a south-west to north-east gradient was observed. Three genetically differentiated areas (P < 0.01) were identified, matching with Major Farming Systems (namely Tree Crop, Cereal-Root Crop, and Root Crop) described by the FAO.ConclusionsLocal chickens form a highly variable gene pool constituting a valuable resource for human populations. Climatic conditions, farming systems, and cultural practices may influence the genetic diversity of village chickens in Africa. A higher density of markers would be needed to identify more precisely the relative importance of these factors.
Conservation Genetics | 2010
Olympe Chazara; Francis Minvielle; Denis Roux; Bertrand Bed’Hom; Katia Feve; Jean-Luc Coville; Boniface B. Kayang; Sophie Lumineau; Alain Vignal; Jean-Marie Boutin; Xavier Rognon
Many cases of introgressive hybridization have been reported among birds, particularly following introduction to the natural environment of individuals belonging to non-native similar taxa. This appears to be the case for common quail (Coturnix coturnix) in France where wild populations artificially come into contact with domesticated Japanese quail (Coturnix japonica) raised for meat and egg production but sometimes released for hunting purposes. In order to highlight the possible existence of gene flows between both taxa, a comparison of nuclear (25 microsatellite loci) and mitochondrial (sequencing and RFLP) DNA polymorphisms was performed on 375 common quails (from France, Spain and Morocco) and 140 Japanese quails (from France and Japan). Genetic diversity was assessed, and analyses (Factorial Correspondence Analysis, Bayesian admixture) of molecular polymorphisms revealed clear differentiation between the two taxa, making it possible to detect for hybrids among quails sampled in the wild. Eight birds expected to be common quail were found to be two pure Japanese quail, one probable backcross to C. japonica, three F1/F2 hybrids, and two probable backcrosses to Coturnix coturnix. These results show that Japanese quails were released and suggest that the two taxa hybridize in the wild. They confirm the urgent need for preventing the release of pure Japanese or hybrid quails to preserve the genetic integrity of C. coturnix. The tools developed for this study should be useful for accurate monitoring of wild quail populations within the framework of avifauna management programs.
African Journal of Biotechnology | 2010
I.A.K. Youssao; P.C. Tobada; B.G. Koutinhouin; M. Dahouda; N.D. Idrissou; G.A. Bonou; U.P. Tougan; S. Ahounou; V. Yapi-Gnaoré; Boniface B. Kayang; Xavier Rognon; Michèle Tixier-Boichard
The study of the phenotypic characterisation and molecular polymorphism of local chicken populations was carried out in Benin on 326 chickens of the Forest ecological area and 316 of the Savannah ecological area, all were 7 months old at least. The collection of blood for the molecular typing was achieved on 121 indigenous chickens of which 60 from the Savannah ecological area and 61 from the Forest ecological area. The genotyping was carried out for 22 microsatellite loci. Weight and body measures of the Savannah chickens were significantly higher (P < 0.001) than those of the Forest chickens. In the Savannah ecological area, the most frequent plumage colours were the black (22.15%), the white (19.62%), the coppery black (7.59%) and the golden partridge (7.59%). In the Forest area, the fawn (15.34%), the black (10.43%), the white (6.8%), the silver white (6.8%) and the golden partridge (6.75%) were the dominant feather colours. Thus, phenotypic characterisation showed significant differences between Savannah and Forest local chickens. The FST calculated between the Savannah and Forest populations revealed a low genetic differentiation and the dendogram showed that Savannah and Forest chickens were quite intermingled. In conclusion, local populations from Savannah and Forest area may be considered as ecotypes, but not as two distinct breeds.
Animal Science Journal | 2010
Richard Osei-Amponsah; Boniface B. Kayang; Augustine Naazie; Yaa Difie Osei; Issaka Youssao; V. Yapi-Gnaoré; Michèle Tixier-Boichard; Xavier Rognon
The characterization of indigenous animal genetic resources is a requisite step in providing needed information for the conservation of useful genotypes against future needs. Thus, in this study, 22 microsatellite markers were used to genotype 114 local chickens from the Forest (n = 59) and Savannah (n = 55) eco-zones of Ghana and the results compared to those of the ancestral red junglefowl (n = 15) and two European commercial chicken populations--a broiler (n = 25) and white leghorn (n = 25). A total of 171 alleles were observed, with an average of 7.8 alleles per locus. The local Ghanaian chickens showed higher diversity in terms of the observed number of alleles per locus (6.6) and observed heterozygosity (0.568) compared with the combined control populations (6.0 and 0.458, respectively). However, Wrights F-statistics revealed negligible genetic differentiation (F(ST)) in local Ghanaian chicken populations. In addition, 65% of the Savannah chickens were inferred to be more likely from the Forest, suggesting a south-north dispersal of chickens from their probable original location in the Forest zone to the Savannah areas. It is concluded that the Forest and Savannah chickens of Ghana are a single, randomly mating unselected population, characterized by high genetic diversity and constitute a valuable resource for conservation and improvement.
BMC Genetics | 2006
Francis Minvielle; Boniface B. Kayang; Miho Inoue-Murayama; Mitsuru Miwa; Alain Vignal; David Gourichon; André Neau; J. L. Monvoisin; Shin-ichi Ito
BackgroundEgg production is of critical importance in birds not only for their reproduction but also for human consumption as the egg is a highly nutritive and balanced food. Consequently, laying in poultry has been improved through selection to increase the total number of eggs laid per hen. This number is the cumulative result of the oviposition, a cyclic and repeated process which leads to a pattern over time (the egg laying curve) which can be modelled and described individually. Unlike the total egg number which compounds all variations, the shape of the curve gives information on the different phases of egg laying, and its genetic analysis using molecular markers might contribute to understand better the underlying mechanisms. The purpose of this study was to perform the first QTL search for traits involved in shaping the egg laying curve, in an F2 experiment with 359 female Japanese quail.ResultsEight QTL were found on five autosomes, and six of them could be directly associated with egg production traits, although none was significant at the genome-wide level. One of them (on CJA13) had an effect on the first part of the laying curve, before the production peak. Another one (on CJA06) was related to the central part of the curve when laying is maintained at a high level, and the four others (on CJA05, CJA10 and CJA14) acted on the last part of the curve where persistency is determinant. The QTL for the central part of the curve was mapped at the same position on CJA06 than a genome-wide significant QTL for total egg number detected previously in the same F2.ConclusionDespite its limited scope (number of microsatellites, size of the phenotypic data set), this work has shown that it was possible to use the individual egg laying data collected daily to find new QTL which affect the shape of the egg laying curve. Beyond the present results, this new approach could also be applied to longitudinal traits in other species, like growth and lactation in ruminants, for which good marker coverage of the genome and theoretical models with a biological significance are available.
Immunogenetics | 2013
Olympe Chazara; Chi-Sheng Chang; Nicolas Bruneau; Khalid Benabdeljelil; J.C. Fotsa; Boniface B. Kayang; N’Goran E. Loukou; Richard Osei-Amponsah; V. Yapi-Gnaoré; Issaka Youssao; Chih-Feng Chen; Marie-Helene Pinard van Der Laan; Michèle Tixier-Boichard; Bertrand Bed’hom
The chicken major histocompatibility complex (MHC) is located on the microchromosome 16 and is described as the most variable region in the genome. The genes of the MHC play a central role in the immune system. Particularly, genes encoding proteins involved in the antigen presentation to T cells. Therefore, describing the genetic polymorphism of this region is crucial in understanding host–pathogen interactions. The tandem repeat LEI0258 is located within the core area of the B region of the chicken MHC (MHC-B region) and its genotypes correlate with serology. This marker was used to provide a picture of the worldwide diversity of the chicken MHC-B region and to categorize chicken MHC haplotypes. More than 1,600 animals from 80 different populations or lines of chickens from Africa, Asia, and Europe, including wild fowl species, were genotyped at the LEI0258 locus. Fifty novel alleles were described after sequencing. The resulting 79 alleles were classified into 12 clusters, based on the SNPs and indels found within the sequences flanking the repeats. Furthermore, hypotheses were formulated on the evolutionary dynamics of the region. This study constitutes the largest variability report for the chicken MHC and establishes a framework for future diversity or association studies.
BMC Genetics | 2006
Mitsuru Miwa; Miho Inoue-Murayama; Naoki Kobayashi; Boniface B. Kayang; Makoto Mizutani; Hideaki Takahashi; Shin-ichi Ito
BackgroundPanda (s) is an autosomal recessive mutation, which displays overall white plumage color with spots of wild-type plumage in the Japanese quail (Coturnix japonica). In a previous study, the s locus was included in the same linkage group as serum albumin (Alb) and vitamin-D binding protein (GC) which are mapped on chicken (Gallus gallus) chromosome 4 (GGA4). In this study, we mapped the s locus on the microsatellite linkage map of the Japanese quail by linkage analysis.ResultsSegregation data on the s locus were obtained from three-generation families (n = 106). Two microsatellite markers derived from the Japanese quail chromosome 4 (CJA04) and three microsatellite markers derived from GGA4 were genotyped in the three-generation families. We mapped the s locus between GUJ0026 and ABR0544 on CJA04. By comparative mapping with chicken, this locus was mapped between 10.0 Mb and 14.5 Mb region on GGA4. In this region, the endothelin receptor B subtype 2 gene (EDNRB2), an avian-specific paralog of the mammalian endothelin receptor B gene (EDNRB), is located. Because EDNRB is responsible for aganglionic megacolon and spot coat color in mouse, rat and equine, EDNRB2 is suggested to be a candidate gene for the s locus.ConclusionThe s locus and the five microsatellite markers were mapped on CJA04 of the Japanese quail. EDNRB2 was suggested to be a candidate gene for the s locus.
Animal Genetic Resources Information = Bulletin de information sur les ressources génétiques animales = Boletín de información sobre recursos genéticos animales | 2013
Richard Osei-Amponsah; Boniface B. Kayang; Augustine Naazie
Summary Characterization of indigenous animal genetic resources is a first step in providing much needed information for the conservation and utilization of useful genotypes for future needs. The study was undertaken to estimate heritability of traits of economic importance in local chicken populations from the forest and savannah zones of Ghana. A restricted maximum likelihood animal model was applied to growth data of local chickens from hatch to 40 weeks to estimate heritability, phenotypic and genotypic correlations of body weight and shank length. Heritability, phenotypic and genotypic correlations were also calculated for egg number and egg weight. High genetic and phenotypic correlations were obtained between body weight and shank length. Average heritability estimates were 0.54, 0.42, 0.30 and 0.47 for body weight, shank length, egg number and egg weight, respectively. These moderate-to-high heritability estimates indicate that these traits could be targeted in genetic improvement programmes for local chickens.