Bonita D. Jones
Eli Lilly and Company
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bonita D. Jones.
Circulation | 2006
Weiming Li; Weiqun Shen; Robert M. Gill; Angela K. Corbly; Bonita D. Jones; Rama M. Belagaje; Yuke Zhang; Shaoqing Tang; Yan Chen; Yan Zhai; Guoming Wang; Asavari Wagle; Kwan Hui; Michael Westmore; Jeffrey C. Hanson; Yun-Fei Chen; Michael Simons; JaiPal Singh
Background— The process of arteriogenesis after occlusion of a major artery is poorly understood. We have used high-resolution microcomputed tomography (&mgr;-CT) imaging to define the arteriogenic response in the mouse model of hindlimb ischemia and to examine the effect of placental growth factor-1 (PlGF-1) on this process. Methods and Results— After common femoral artery ligation, &mgr;-CT imaging demonstrated formation of collateral vessels originating near the ligation site in the upper limb and connecting to the ischemic calf muscle region. Three-dimensional &mgr;-CT and quantitative image analysis revealed changes in the number of segments and the segmental volume of vessels, ranging from 8 to 160 &mgr;m in diameter. The medium-size vessels (48 to 160 &mgr;m) comprising 85% of the vascular volume were the major contributor (188%) to the change in vascular volume in response to ischemia. Intramuscular injections of Ad-PlGF-1 significantly increased Sca1+ cells in the circulation, α-actin–stained vessels, and perfusion of the ischemic hindlimb. These effects were predominantly associated with an increase in vascular volume contributed by the medium-size (96 to 144 &mgr;m) vessels as determined by &mgr;-CT. Conclusions— High-resolution &mgr;-CT delineated the formation of medium-size collaterals representing a major vascular change that contributed to the restoration of vascular volume after ischemia. This effect is selectively potentiated by PlGF-1. Such selective enhancement of arteriogenesis by therapeutically administered PlGF-1 demonstrates a desirable biological activity for promoting the growth of functionally relevant vasculature.
European Journal of Heart Failure | 2009
Julian C. Braz; Robert M. Gill; Angela K. Corbly; Bonita D. Jones; Najia Jin; Chris J. Vlahos; Qingyu Wu; Weiqun Shen
Activation of phosphoinositide‐3 kinase (PI3K) is essential for cell growth, relating to adaptive and maladaptive cardiac hypertrophy. This longitudinal canine study was designed to investigate the role of PI3Kα and PI3Kγ in cardiac remodelling during congestive heart failure (CHF) and cardiac recovery (CR).
Cancer Research | 2017
Wenjuan Wu; Shripad V. Bhagwat; Constance King; Susan E. Pratt; Xueqian Gong; Julie Stewart; Bonita D. Jones; Robert Flack; Richard Beckman; Beverly L. Falcon; Jason Manro; William Thomas Mcmillen; Ramon V. Tiu; Sheng-Bin Peng; Christoph Reinhard; Sajan Joseph; Sean Buchanan
ERK1/2, a key downstream effector of RAS mutations, is involved in the signaling network which drives cell proliferation, survival, metastasis and cancer resistance to drug treatment (including MEK and BRAF inhibitors). Lung cancer is a leading cause of cancer death worldwide. KRAS mutation present in up to 30% of NSCLC patients is associated with a poor prognosis and represents an unmet medical need. In KRAS mutant NSCLC, enhanced ERK activation cooperates with dysregulation of the cell cycle checkpoint (e.g., cyclin D, CDK4 and CDK6 complex), and contributes to tumor progression; thus, the simultaneous inhibition of ERK and the CDK4/6 pathway is hypothesized to augment tumor growth inhibition. LY3214996, a novel and highly selective small molecule inhibitor of ERK1 and ERK2, is currently in phase I clinical trial and has been shown to inhibit cell proliferation in RAS or BRAF mutant tumor cells in vitro and xenograft tumor growth in vivo. Abemaciclib, a CDK4 and CDK6-selective inhibitor is currently in phase III studies for ER positive breast cancer and KRAS mutant NSCLC. In this study we explore the potential efficacy of combined inhibition of ERK1/2 and CDK4 and CDK6 in KRAS mutant NSCLC. The combination of LY3214996 and abemaciclib synergistically inhibited cell proliferation in 85% of KRAS mutant cells in an unbiased NSCLC panel. Combination treatment with LY3214996 and abemaciclib significantly decreased levels of phospho- p90RSK, phospho-Rb, phospho-S6 and Ki67; and synergistically inhibited cell proliferation and survival in KRAS mutant NSCLC cell lines including NCI-H2122 (G-12C), A549 (G-12S) and NCI-H441 (G-12V). Subsequent in vivo studies showed that the combination treatment with LY3214996 and abemaciclib was well tolerated and led to more robust tumor growth inhibition or regression in all KRAS mutant NSCLC xenograft models (H2122, A549 and H441) compared with either single agent treatment (p≤0.002). Furthermore, in xenograft tumors the combination of LY3214996 and abemaciclib resulted in more significant reduction of phospho-p90RSK, phospho-Rb, phospho-S6 and Ki67 in H2122 tumors compared with either single agent. Overall, the combined inhibition of ERK1/2 and CDK4 and CDK6 was tolerated and enhanced antitumor efficacy in several KRAS mutant NSCLC preclinical models. These data support the feasibility of combining ERK inhibitor LY3214996 with CDK4 and CDK6 inhibitor abemaciclib as a promising strategy for the treatment of KRAS mutant NSCLC patients, and provides the rationale for the combination study in the on-going phase I LY3214996 clinic trial (NCT02857270). Citation Format: Wenjuan Wu, Shripad V. Bhagwat, Constance King, Susan Pratt, Xueqian Gong, Julie Stewart, Bonita Jones, Robert Flack, Richard Beckman, Beverly Falcon, Jason Manro, William T. McMillen, Ramon V. Tiu, Sheng-Bin Peng, Christoph Reinhard, Sajan Joseph, Sean Buchanan. Combination of a novel ERK1/2 inhibitor (LY3214996) with CDK4 and CDK6 inhibitor (abemaciclib) enhances antitumor efficacy in KRAS mutant non-small cell lung cancer (NSCLC) [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 317. doi:10.1158/1538-7445.AM2017-317
Cancer Research | 2016
Wenjuan Wu; Julie Stewart; Constance King; Bonita D. Jones; Robert Flack; Susan E. Pratt; Randi Berryman; Michelle Swearingen; Diane M. Bodenmiller; Xi Lin; Mark T. Uhlik; Beverly L. Falcon; Anthony S. Fischl; Jason Manro; Ramon V. Tiu; Sudhakar Chintharlapalli; Bronislaw Pytowski; Shripad V. Bhagwat; Sean Buchanan; Sheng-Bin Peng
Lung cancer is the leading cause of cancer death worldwide. MAPK activation via KRAS mutation is present in up to 30% of lung cancer patients. NSCLC patients with KRAS mutation is associated with poor prognosis and represents an unmet medical need. LY3009120, a pan-RAF and RAF dimer inhibitor which is in phase I clinical trial, was previously demonstrated to have anti-tumor activities in BRAF or RAS mutant tumor cells in vitro and in vivo. Ramucirumab, a fully-human antagonist monoclonal antibody to human VEGFR-2 was recently approved as an anti-angiogenic treatment for several cancer indications including second-line NSCLC. Combination strategies in cancer including targeting both tumor cells and the surrounding stroma cells have been shown to be effective in various disease subtypes. In this study, the combination effect of LSN3074753 (a surrogate and an analogue of LY3009120) with VEGFR-2 inhibitor DC101 (a monoclonal antibody specific for murine VEGFR-2 and a surrogate for ramucirumab) were evaluated in KRAS mutant NSCLC models, including NCI-H2122 (G-12C), A549 (G-12S) and NCI-H441 (G-12V). LSN3074753 treatment alone resulted in 66.9% and 82.4% tumor growth inhibition in H2122 and A549 xenograft tumors, respectively; and 41.4% tumor regression in H441 xenograft tumors. DC101 treatment alone resulted in 64.5%, 75% and 102.2% tumor growth inhibition in H2122, A549 and H441, respectively. The combination of LSN3074753 and DC101 led to more significant tumor growth inhibition (87.2% of tumor growth inhibition for H2122, p Citation Format: Wenjuan Wu, Julie Stewart, Constance King, Bonita Jones, Robert Flack, Susan Pratt, Randi Berryman, Michelle Swearingen, Diane Bodenmiller, Xi Lin, Mark Uhlik, Beverly Falcon, Anthony Fischl, Jason Manro, Ramon Tiu, Sudhakar Chintharlapalli, Bronislaw Pytowski, Shripad V. Bhagwat, Sean Buchanan, Sheng-Bin Peng. Combined inhibition of pan-RAF and VEGFR-2 mediates antitumor activity in KRAS mutant non-small cell lung cancer (NSCLC) through enhanced inhibition of tumor angiogenesis and growth. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 930.
Life Sciences | 2006
Robert M. Gill; Bonita D. Jones; Angela K. Corbly; Dan G. Ohad; Gerald Smith; George E. Sandusky; Michael E. Christe; Jie Wang; Weiqun Shen
American Journal of Physiology-heart and Circulatory Physiology | 2006
Robert M. Gill; Bonita D. Jones; Angela K. Corbly; Juan Wang; Julian C. Braz; George E. Sandusky; Jie Wang; Weiqun Shen
Journal of Pharmacology and Experimental Therapeutics | 2002
Weiqun Shen; Robert M. Gill; Bonita D. Jones; Jian-Ping Zhang; Angela K. Corbly; Mitchell I. Steinberg
American Journal of Physiology-heart and Circulatory Physiology | 2005
Weiqun Shen; Robert M. Gill; Jian-Ping Zhang; Bonita D. Jones; Angela K. Corbly; Mitchell I. Steinberg
Journal of Cardiac Failure | 2002
Robert M. Gill; Bonita D. Jones; Mitchell I. Steinberg; Weiqun Shen
Cancer Research | 2018
Wenjuan Wu; Shripad V. Bhagwat; Bonita D. Jones; Michelle Swearingen; Beverly L. Falcon; William Thomas Mcmillen; Sajan Joseph; Sean Buchanan; Sheng-Bin Peng; Christoph Reinhard; Ramon V. Tiu