Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bonnie de Vries is active.

Publication


Featured researches published by Bonnie de Vries.


Journal of Sleep Research | 2005

Weak relationships between suppression of melatonin and suppression of sleepiness/fatigue in response to light exposure

Melanie Rüger; Marijke C. M. Gordijn; Domien Beersma; Bonnie de Vries; Serge Daan

In this paper we examine the relationship between melatonin suppression and reduction of sleepiness through light by comparing three different data sets. In total 36 subjects participated in three studies and received 4 h of bright light either from midnight till 4:00 hours (experiments A and B) or from noon till 16:00 hours (experiment C). In experiment A (night‐time light, partial illumination of the retina, pupil dilated) subjects were exposed to either 100 lx of ocular light on the temporal, 100 lx on the nasal part of the retina, or <10 lx of dim light on the whole retina. In experiments B (night‐time light, whole retina, pupil not dilated) and C (daytime light, whole retina, pupil not dilated) subjects were exposed either to bright (5000 lx) or to dim light (<10 lx). Subjective sleepiness/fatigue and melatonin concentrations in saliva were assessed hourly in all three experiments. For experiment A, a significant suppression of melatonin due to nasal and temporal illumination of the retina was found, that was not accompanied by a detectable reduction of subjective sleepiness/fatigue. For experiment B we found a suppression of melatonin that was paralleled with a significant reduction in subjective sleepiness, but not in fatigue. During experiment C we found no melatonin suppression but a reduction of subjective sleepiness, but also no effect on fatigue. From these data we conclude that the effects of light on sleepiness/fatigue are not mediated by melatonin and that the influence of endogenous melatonin concentration on sleepiness/fatigue is restricted.


Journal of Biological Rhythms | 2003

Acute and Phase-Shifting Effects of Ocular and Extraocular Light in Human Circadian Physiology:

Melanie Rüger; Marijke C. M. Gordijn; Domien Beersma; Bonnie de Vries; Serge Daan

Light can influence physiology and performance of humans in two distinct ways. It can acutely change the level of physiological and behavioral parameters, and it can induce a phase shift in the circadian oscillators underlying variations in these levels. Until recently, both effects were thought to require retinal light perception. This view was challenged by Campbell and Murphy, who showed significant phase shifts in core body temperature and melatonin using an extraocular stimulus. Their study employed popliteal skin illumination and exclusively considered phase-shifting effects. In this paper, the authors explore both acute effects and phase-shifting effects of ocular as well as extraocular light. Twelve healthy males participated in a within-subject design and received all of three light conditions—(1) dim ocular light/no light to the knee, (2) dim ocular light/bright extraocular light to the knee, and (3) bright ocular light/no light to the knee—on separate nights in random order. The protocol consisted of an adaptation night followed by a 26-h period of sustained wakefulness, during which a 4-h light pulse was presented at a time when maximal phase delays were expected. The authors found neither immediate nor phase-shifting effects of extraocular light exposure on melatonin, core body temperature (CBT), or sleepiness. Ocular bright-light exposure reduced the nocturnal circadian drop in CBT, suppressed melatonin, and reduced sleepiness significantly. In addition, the 4-h ocular light pulse delayed the CBT rhythm by -55 min compared to the drift of the CBT rhythm in dim light. The melatonin rhythm shifted by -113 min, which differed significantly from the drift in the melatonin rhythm in the dim-light condition (-26 min). The failure to find immediate or phase-shifting effects in response to extraocular light in a within-subjects design in which effects of ocular bright light are confirmed strengthens the doubts raised by other labs of the impact of extraocular light on the human circadian system.


Journal of Sleep Research | 2010

Effects of artificial dawn on sleep inertia, skin temperature, and the awakening cortisol response

Maan van de Werken; Marina C. Giménez; Bonnie de Vries; Domien Beersma; Eus J. W. Van Someren; Marijke C. M. Gordijn

The effect of artificial dawn during the last 30 min of sleep on subsequent dissipation of sleep inertia was investigated, including possible involvement of cortisol and thermoregulatory processes. Sixteen healthy subjects who reported difficulty with waking up participated in random order in a control and an artificial dawn night. Sleep inertia severity was measured by subjective ratings of sleepiness and activation, and by performance on an addition and a reaction time task measured at 1, 15, 30, 45, 60, and 90 min after waking up at habitual wake up time at workdays. At all intervals, saliva samples were collected for cortisol analysis. Sleep electroencephalogram was recorded during the 30 min prior to waking up; core body temperature and skin temperatures were recorded continuously until 90 min after waking up. Subjective sleepiness was significantly decreased and subjective activation increased after waking up in the artificial dawn condition as compared with control, in which lights were turned on at waking up. These effects can be explained by effects of artificial dawn on skin temperature and amount of wakefulness during the 30 min prior to the alarm. Artificial dawn accelerated the decline in skin temperature and in the distal‐to‐proximal skin temperature gradient after getting up. No significant effects of artificial dawn on performance, core body temperature, and cortisol were found. These results suggest that the physiology underlying the positive effects of artificial dawn on the dissipation of sleep inertia involves light sleep and an accelerated skin temperature decline after awakening.


Chronobiology International | 2013

Short-wavelength attenuated polychromatic white light during work at night: limited melatonin suppression without substantial decline of alertness

Maan van de Werken; Marina C. Giménez; Bonnie de Vries; Domien Beersma; Marijke C. M. Gordijn

Exposure to light at night increases alertness, but light at night (especially short-wavelength light) also disrupts nocturnal physiology. Such disruption is thought to underlie medical problems for which shiftworkers have increased risk. In 33 male subjects we investigated whether short-wavelength attenuated polychromatic white light (<530 nm filtered out) at night preserves dim light melatonin levels and whether it induces similar skin temperature, alertness, and performance levels as under full-spectrum light. All 33 subjects participated in random order during three nights (at least 1 wk apart) either under dim light (3 lux), short-wavelength attenuated polychromatic white light (193 lux), or full-spectrum light (256 lux). Hourly saliva samples for melatonin analysis were collected along with continuous measurements of skin temperature. Subjective sleepiness and activation were assessed via repeated questionnaires and performance was assessed by the accuracy and speed of an addition task. Our results show that short-wavelength attenuated polychromatic white light only marginally (6%) suppressed salivary melatonin. Average distal-to-proximal skin temperature gradient (DPG) and its pattern over time remained similar under short-wavelength attenuated polychromatic white light compared with dim light. Subjects performed equally well on an addition task under short-wavelength attenuated polychromatic white light compared with full-spectrum light. Although subjective ratings of activation were lower under short-wavelength attenuated polychromatic white light compared with full-spectrum light, subjective sleepiness was not increased. Short-wavelength attenuated polychromatic white light at night has some advantages over bright light. It hardly suppresses melatonin concentrations, whereas performance is similar to the bright light condition. Yet, alertness is slightly reduced as compared with bright light, and DPG shows similarity to the dim light condition, which is a physiological sign of reduced alertness. Short-wavelength attenuated polychromatic white light might therefore not be advisable in work settings that require high levels of alertness. (Author correspondence: [email protected])


Chronobiology International | 2010

Effects of artificial dawn on subjective ratings of sleep inertia and dim light melatonin onset

Marina C. Giménez; Martijn Hessels; Maan van de Werken; Bonnie de Vries; Domien Beersma; Marijke C. M. Gordijn

The timing of work and social requirements has a negative impact on performance and well-being of a significant proportion of the population in our modern society due to a phenomenon known as social jetlag. During workdays, in the early morning, late chronotypes, in particular, suffer from a combination of a nonoptimal circadian phase and sleep deprivation. Sleep inertia, a transient period of lowered arousal after awakening, therefore, becomes more severe. In the present home study, the authors tested whether the use of an alarm clock with artificial dawn could reduce complaints of sleep inertia in people having difficulties in waking up early. The authors also examined whether these improvements were accompanied by a shift in the melatonin rhythm. Two studies were performed: Study 1: three conditions (0, 50, and 250 lux) and Study 2: two conditions (0 lux and self-selected dawn-light intensity). Each condition lasted 2 weeks. In both studies, the use of the artificial dawn resulted in a significant reduction of sleep inertia complaints. However, no significant shift in the onset of melatonin was observed after 2 weeks of using the artificial dawn of 250 lux or 50 lux compared to the control condition. A multilevel analysis revealed that only the presence of the artificial dawn, rather than shift in the dim light melatonin onset or timing of sleep offset, is related to the observed reduction of sleep inertia complaints. Mechanisms other than shift of circadian rhythms are needed to explain the positive results on sleep inertia of waking up with a dawn signal. (Author correspondence: [email protected])


Journal of Biological Rhythms | 2005

Nasal versus Temporal Illumination of the Human Retina: Effects on Core Body Temperature, Melatonin, and Circadian Phase

Melanie Rüger; Marijke C. M. Gordijn; Domien Beersma; Bonnie de Vries; Serge Daan

The mammalian retina contains both visual and circadian photoreceptors. In humans, nocturnal stimulation of the latter receptors leads to melatonin suppression, which might cause reduced nighttime sleepiness. Melatonin suppression is maximal when the nasal part of the retina is illuminated. Whether circadian phase shifting in humans is due to the same photoreceptors is not known. The authors explore whether phase shifts and melatonin suppression depend on the same retinal area. Twelve healthy subjects participated in a within-subjects design and received all of 3 light conditions—1) 10 lux of dim light on the whole retina, 2) 100 lux of ocular light on the nasal part of the retina, and 3) 100 lux of ocular light on the temporal part of the retina—on separate nights in random order. In all 3 conditions, pupils were dilated before and during light exposure. The protocol consisted of an adaptation night followed by a 23-h period of sustained wakefulness, during which a 4-h light pulse was presented at a time when maximal phase delays were expected. Nasal illumination resulted in an immediate suppression of melatonin but had no effect on subjective sleepiness or core body temperature (CBT). Nasal illumination delayed the subsequent melatonin rhythm by 78 min, which is significantly (p= 0.016) more than the delay drift in the dim-light condition (38 min), but had no detectable phase-shifting effect on the CBT rhythm. Temporal illumination suppressed melatonin less than the nasal illumination and had no effect on subjective sleepiness and CBT. Temporal illumination delayed neither the melatonin rhythm nor the CBT rhythm. The data show that the suppression of melatonin does not necessarily result in a reduction of subjective sleepiness and an elevation ofCBT. In addition, 100 lux of bright white light is strong enough to affect the photoreceptors responsible for the suppression of melatonin but not strong enough to have a significant effect on sleepiness and CBT. This may be due to the larger variability of the latter variables.


General and Comparative Endocrinology | 2012

Maternal steroids in egg yolk as a pathway to translate predation risk to offspring: Experiments with great tits

Michael Coslovsky; Ton G. G. Groothuis; Bonnie de Vries; Heinz Richner

Exposure of mothers to risk of predation can induce phenotypic changes in offspring as shown in several species. We previously found that cross-fostered great tit (Parus major) chicks of females exposed to increased predation risk were smaller and lighter, but had faster wing growth than control cross-fostered chicks, possibly improving predator-escaping abilities. Here we examined the possible role of maternal steroids deposited in eggs as an underlying mechanism. We collected eggs from female great tits under either experimentally increased predation risk (PRED) or control treatments (CON) and analyzed the concentration of testosterone, androstenedione, and progesterone in the yolks. PRED eggs contained lower levels of testosterone than CON eggs, but levels of androstenedione and progesterone did not differ. The smaller size and mass of chicks found in the previous study may thus be explained by the lower testosterone concentrations, since yolk testosterone is known to boost growth and development. Alternatively, testosterone may act as a modulator of differential investment into morphological traits, rather than a simple growth enhancer, explaining lower body mass in conjunction with the accelerated wing growth. This could possibly occur concurrently with other hormones such as corticosterone.


Ecology and Evolution | 2016

Maternal adjustment or constraint: differential effects of food availability on maternal deposition of macro‐nutrients, steroids and thyroid hormones in rock pigeon eggs

Bin-Yan Hsu; Cor Dijkstra; Veerle Darras; Bonnie de Vries; Ton G. G. Groothuis

Abstract In oviparous species like birds, eggs provide the direct environment in which embryos are developing. Mothers may adjust different egg components in different ways in reaction to environmental cues either to adjust offspring development or because of constraints. In this study, we investigated the effects of food quality and quantity before and during egg laying on three different aspects of egg quality: macro‐nutrients (egg and yolk mass), androgens (testosterone and androstenedione), and thyroid hormones (3,5,3′‐triiodothyronine, T3 and l‐thyroxine, T4), using the rock pigeon (Columba livia). As expected, egg and yolk mass were significantly reduced for the eggs laid under the poor‐food condition, indicating a maternal trade‐off between offspring and self in allocating important resources. We did not find any significant change in yolk testosterone or their within‐clutch pattern over the laying sequence. This is consistent with the fact that, in contrast with nutrients, these hormones are not costly to produce, but does not support the hypothesis that they play a role in adjusting brood size to food conditions. In contrast, we found that T3 levels were higher in the egg yolks under the poor‐food condition whereas the total T4 content was lower. This change could be related to the fact that iodine, the critical constituent of thyroid hormones, might be a limiting factor in the production of this hormone. Given the knowledge that food restriction usually lead to reduction of circulating T3 levels, our results suggested that avian mothers can independently regulate its concentrations in their eggs from their own circulation. The study demonstrates that environmentally induced maternal effects via the egg can be a result of a combination of constrained resources and unconstrained signals and that thyroid hormones might be an interesting case of both. Therefore, this hormone and the interplay of different maternal effects on the offspring phenotype deserve much more attention.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2012

Relationship between oxidative stress and circulating testosterone and cortisol in pre-spawning female brown trout

Mia O. Hoogenboom; Neil B. Metcalfe; Ton G. G. Groothuis; Bonnie de Vries; David Costantini

Reproduction in vertebrates is an energy-demanding process that is mediated by endogenous hormones and potentially results in oxidative stress. The primary aim of this study was to quantify the relationship between oxidative stress parameters (antioxidant capacity and levels of reactive oxygen metabolites) and circulating testosterone and cortisol in a common and widespread teleost fish, the brown trout (Salmo trutta, L.). Results show that trout with higher testosterone levels prior to spawning have higher levels of oxidative damage at the time that they spawn (although by the time of spawning testosterone levels had dropped, leading to a negative relationship between testosterone and oxidative damage at that time). Cortisol levels were not directly related to oxidative damage or antioxidant capacity, but concentrations of this hormone were positively related to levels of fungal infection, which was itself associated both with lower antioxidant capacity and lower levels of oxidative damage. These results highlight the complexity of interactions between different components of the endocrine system and metabolism and suggest that caution be used in interpreting relationships between a single hormone and indicators of oxidative balance or other fitness proxies.


General and Comparative Endocrinology | 2013

Yolk concentrations of hormones and glucose and egg weight and egg dimensions in unincubated chicken eggs, in relation to egg sex and hen body weight

M. Aamir Aslam; Marcel Hulst; Rita A. H. Hoving-Bolink; Mari A. Smits; Bonnie de Vries; Ilse Weites; Ton G. G. Groothuis; H. Woelders

Birds can manipulate offspring sex ratio under natural and experimental conditions and maternal hormones have been shown to be involved in this process. Studies also provided evidence for the presence of sex specific concentrations of yolk hormones in avian eggs. These findings led to the suggestion that yolk hormones could influence genetic sex determination in birds. However, in previous studies, yolk hormone concentrations and egg sex were studied in incubated eggs, although incubation of the eggs and embryonic development can alter yolk hormone concentrations and measured sex ratio. This study is the first to determine a wide array of egg components and hen body weight in relation to the sex of the egg in unincubated eggs. Egg parameters studied were yolk concentrations of testosterone, estradiol, androstenedione, progesterone, dihydrotestosterone, and glucose, and egg weight and dimensions. In addition, we studied the associations among all measured parameters. Associations were found between a number of yolk hormones (progesterone associated with testosterone, estradiol and androstenedione; androstenedione with testosterone; dihydrotestosterone with estradiol and androstenedione) as well as between yolk testosterone and egg length and egg weight. There were no significant overall differences between male and female chicken eggs in any of the measured egg parameters. However, there were a few interactions such as the interaction of egg sex with dihydrotestosterone and with hen body weight which predicted estradiol levels and an interaction of estradiol levels with egg width for predicting sex of egg. Their biological relevance need, however, further study.

Collaboration


Dive into the Bonnie de Vries's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serge Daan

University of Groningen

View shared research outputs
Top Co-Authors

Avatar

Veerle Darras

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin-Yan Hsu

University of Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge