Bonnie J. Nagel
Oregon Health & Science University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bonnie J. Nagel.
Alcoholism: Clinical and Experimental Research | 2008
Krista Lisdahl Medina; Timothy McQueeny; Bonnie J. Nagel; Karen L. Hanson; Alecia D. Schweinsburg; Susan F. Tapert
BACKGROUND Adolescents with alcohol use disorders (AUD) have shown smaller prefrontal cortex (PFC) volumes compared with healthy controls; however, differences may have been due to comorbid disorders. This study examined PFC volumes in male and female adolescents with AUD who did not meet criteria for comorbid mood or attention disorders. METHODS Participants were adolescents aged 15 to 17 who met criteria for AUD (n = 14), and demographically similar healthy controls (n = 17). Exclusions included any history of a psychiatric or neurologic disorder other than AUD or conduct disorder. Magnetic resonance imaging scans occurred after at least 5 days of abstinence from alcohol or drugs. Overall PFC volumes and white matter PFC volumes were compared between groups. RESULTS After controlling for conduct disorder, gender, and intracranial volume, AUD teens demonstrated marginally smaller anterior ventral PFC volumes (p = 0.09) than controls, and significant interactions between group and gender were observed (p < 0.001 to p < 0.03). Compared with same-gender controls, females with AUD demonstrated smaller PFC volumes, while males with AUD had larger PFC volumes. The same pattern was observed for PFC white matter volumes. CONCLUSIONS Consistent with adult literature, alcohol use during adolescence is associated with prefrontal volume abnormalities, including white matter differences. However, adolescents with AUD demonstrated gender-specific morphometric patterns. Thus, it is possible that gender may moderate the impact of adolescent alcohol use on prefrontal neurodevelopment, and the neurodevelopmental trajectories of heavy drinking boys and girls should be evaluated separately in longitudinal studies.
Biological Psychiatry | 2010
Damien A. Fair; Jonathan Posner; Bonnie J. Nagel; Deepti Bathula; Taciana G. Costa Dias; Kathryn L. Mills; Michael S. Blythe; Aishat Giwa; Colleen F. Schmitt; Joel T. Nigg
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a major public health concern. It has been suggested that the brains default network may provide a crucial avenue for understanding the neurobiology of attention deficit/hyperactivity disorder. Evaluations of the default network have increased over recent years with the applied technique of resting-state functional connectivity magnetic resonance imaging (rs-fcMRI). These investigations have established that spontaneous activity in this network is highly correlated at rest in young adult populations. This coherence seems to be reduced in adults with ADHD. This is an intriguing finding, as coherence in spontaneous activity within the default network strengthens with age. Thus, the pathophysiology of ADHD might include delayed or disrupted maturation of the default network. If so, it is important to determine whether an altered developmental picture can be detected using rs-fcMRI in children with ADHD. METHODS This study used the typical developmental context provided previously by Fair et al. (2008) to examine coherence of brain activity within the default network using rs-fcMRI in children with (n = 23) and without attention deficit/hyperactivity disorder (n = 23). RESULTS We found that functional connections previously shown as developmentally dynamic in the default network were atypical in children with attention deficit/hyperactivity disorder-consistent with perturbation or failure of the maturational processes. CONCLUSIONS These findings are consistent with the hypothesis that atypical consolidation of this network over development plays a role in attention deficit/hyperactivity disorder.
Journal of The International Neuropsychological Society | 2007
Krista Lisdahl Medina; Karen L. Hanson; Alecia D. Schweinsburg; Mairav Cohen-Zion; Bonnie J. Nagel; Susan F. Tapert
In adults, studies examining the long-lasting cognitive effects of marijuana use demonstrate subtle deficits in attention, executive function, and memory. Because neuromaturation continues through adolescence, these results cannot necessarily generalize to adolescent marijuana users. The goal of this study was to examine neuropsychological functioning in abstinent marijuana using and demographically similar control adolescents. Data were collected from 65 adolescent marijuana users (n=31, 26% females) and controls (n=34, 26% females) 16-18 years of age. Extensive exclusionary criteria included independent psychiatric, medical, and neurologic disorders. Neuropsychological assessments were conducted after>23 days of monitored abstinence. After controlling for lifetime alcohol use and depressive symptoms, adolescent marijuana users demonstrated slower psychomotor speed (p<.05), and poorer complex attention (p<.04), story memory (p<.04), and planning and sequencing ability (p<.001) compared with controls. Post hoc analysis revealed that the number of lifetime marijuana use episodes was associated with poorer cognitive function, even after controlling for lifetime alcohol use. The general pattern of results suggested that, even after a month of monitored abstinence, adolescent marijuana users demonstrate subtle neuropsychological deficits compared with nonusers. It is possible that frequent marijuana use during adolescence may negatively influence neuromaturation and cognitive development.
Cerebral Cortex | 2012
Megan M. Herting; Emily C. Maxwell; Christy Irvine; Bonnie J. Nagel
BACKGROUND During adolescence, numerous factors influence the organization of the brain. It is unclear what influence sex and puberty have on white matter microstructure, as well as the role that rapidly increasing sex steroids play. METHODS White matter microstructure was examined in 77 adolescents (ages 10-16) using diffusion tensor imaging. Multiple regression analyses were performed to examine the relationships between fractional anisotropy (FA) and mean diffusivity (MD) and sex, puberty, and their interaction, controlling for age. Follow-up analyses determined if sex steroids predicted microstructural characteristics in sexually dimorphic and pubertal-related white matter regions, as well as in whole brain. RESULTS Boys had higher FA in white matter carrying corticospinal, long-range association, and cortico-subcortical fibers, and lower MD in frontal and temporal white matter compared with girls. Pubertal development was related to higher FA in the insula, while a significant sex-by-puberty interaction was seen in superior frontal white matter. In boys, testosterone predicted white matter integrity in sexually dimorphic regions as well as whole brain FA, whereas estradiol showed a negative relationship with FA in girls. CONCLUSIONS Sex differences and puberty uniquely relate to white matter microstructure in adolescents, which can partially be explained by sex steroids.
Psychiatry Research-neuroimaging | 2008
Alecia D. Schweinsburg; Bonnie J. Nagel; Brian C. Schweinsburg; Ann Park; Rebecca J. Theilmann; Susan F. Tapert
Marijuana is the most widely used illicit substance among teenagers, yet little is known about the possible neural influence of heavy marijuana use during adolescence. We previously demonstrated an altered functional magnetic resonance imaging (fMRI) activity related to spatial working memory (SWM) among adolescents who were heavy users of after an average of 8 days of abstinence, but the persisting neural effects remain unclear. To characterize the potentially persisting neurocognitive effects of heavy marijuana use in adolescence, we examined fMRI response during SWM among abstinent marijuana-using teens. Participants were 15 MJ teens and 17 demographically similar non-using controls, ages 16-18. Teens underwent biweekly urine toxicology screens to ensure abstinence for 28 days before fMRI acquisition. Groups performed similarly on the SWM task, but MJ teens demonstrated lower activity in right dorsolateral prefrontal and occipital cortices, yet significantly more activation in right posterior parietal cortex. MJ teens showed abnormalities in brain response during a SWM task compared with controls, even after 1 month of abstinence. The activation pattern among MJ teens may reflect different patterns of utilization of spatial rehearsal and attention strategies, and could indicate altered neurodevelopment or persisting abnormalities associated with heavy marijuana use in adolescence.
Alcohol | 2010
Alecia D. Schweinsburg; Tim McQueeny; Bonnie J. Nagel; Lisa T. Eyler; Susan F. Tapert
Binge alcohol use is common among teenagers with 28% of 12th graders reporting getting drunk in the past month. Chronic heavy drinking has been associated with verbal learning and memory deficits in adolescents and adults, yet verbal encoding in less frequently drinking teens has not yet been studied. Here, we examined functional magnetic resonance imaging (fMRI) response during verbal encoding among adolescent binge drinkers. Participants recruited from local high schools were of ages 16-18 and consisted of 12 binge drinkers and 12 demographically similar nondrinkers. Participants were all nonsmokers, and drinkers were abstinent from alcohol for an average of 33 days at the time of scanning. Participants performed a verbal paired associates learning task during fMRI acquisition. Drinkers recalled marginally fewer words than nondrinkers (P=.07). Compared with nondrinkers, bingers showed more response in right superior frontal and bilateral posterior parietal cortices but less response in occipital cortex during novel encoding (Ps<.05, clusters >1,512microL). In addition, controls showed significant activation in the left hippocampus during novel encoding, whereas binge drinkers did not. Adolescent binge drinkers demonstrated (1) more response than nondrinkers in frontal and parietal regions, which could suggest greater engagement of working memory systems during encoding; (2) no hippocampal activation to novel word pairs; and (3) slightly poorer word pair recall, which could indicate disadvantaged processing of novel verbal information and a slower learning slope. Longitudinal studies will be needed to ascertain the degree to which emergence of binge drinking is linked temporally to these brain response patterns.
Addiction Biology | 2009
Krista Lisdahl Medina; Tim McQueeny; Bonnie J. Nagel; Karen L. Hanson; Tony T. Yang; Susan F. Tapert
Adult human studies suggest frontal dysfunction associated with chronic marijuana (MJ) use, but due to continued neuromaturation, adult studies may not generalize to adolescents. This study characterized prefrontal cortex (PFC) morphometry in chronic MJ‐using adolescents following 1 month of monitored abstinence. Data were collected from MJ users (n = 16) and controls (n = 16) aged 16–18. Extensive exclusionary criteria included co‐morbid psychiatric and neurologic disorders. Substance use and anatomical measures were collected after 28 days of monitored abstinence. PFC volumes were ascertained from manual tracing by reliable raters on high‐resolution magnetic resonance images. After controlling for lifetime alcohol use, gender and intracranial volume, MJ users did not differ from controls in PFC volume. However, marginal group‐by‐gender interactions were observed (P < 0.09): female MJ users demonstrated comparatively larger PFC volumes while male MJ users had smaller volumes compared with same‐gender controls. Further, group status and total PFC volume interacted in predicting executive functioning (P < 0.05). Among MJ users, smaller PFC total volume was associated with better executive functioning while the opposite pattern was seen among the controls. These preliminary results indicate that gender may moderate the relationship between MJ use and PFC morphometry. Given the relationship between larger PFC total volumes and poorer executive functioning among MJ users, female MJ users may be at increased risk for neurocognitive consequences. Future research will measure PFC gray and white matter separately and follow boys and girls over adolescence to examine the influence of MJ use on neurodevelopment.
Alcoholism: Clinical and Experimental Research | 2010
Megan M. Herting; Daniel Schwartz; Suzanne H. Mitchell; Bonnie J. Nagel
BACKGROUND Youth with family history of alcohol abuse have a greater risk of developing an alcohol use disorder (AUD). Brain and behavior differences may underlie this increased vulnerability. The current study examined delay discounting behavior and white matter microstructure in youth at high risk for alcohol abuse, as determined by a family history of alcoholism (FH+), and youth without such family history (FH-). METHODS Thirty-three healthy youth (FH+ = 15, FH- = 18), ages 11 to 15 years, completed a delay discounting task and underwent diffusion tensor imaging. Tract-based spatial statistics (Smith et al., 2006), as well as follow-up region-of-interest analyses, were performed to compare fractional anisotropy (FA) between FH+ and FH- youth. RESULTS FH+ youth showed a trend toward increased discounting behavior and had significantly slower reaction times (RTs) on the delay discounting paradigm compared to FH- youth. Group differences in FA were seen in several white matter tracts. Furthermore, lower FA in the left inferior longitudinal fasciculus and the right optic radiation statistically mediated the relationship between FH status and slower RTs on the delay discounting task. CONCLUSIONS Youth with a family history of substance abuse have disrupted white matter microstructure, which likely contributes to less efficient cortical processing and may act as an intrinsic risk factor contributing to an increased susceptibility of developing AUD. In addition, FHP youth showed a trend toward greater impulsive decision making, possibly representing an inherent personal characteristic that may facilitate substance use onset and abuse in high-risk youth.
Frontiers in Systems Neuroscience | 2010
Damien A. Fair; Deepti Bathula; Kathryn L. Mills; Taciana G. Costa Dias; Michael S. Blythe; Dongyang Zhang; Abraham Z. Snyder; Marcus E. Raichle; Alexander A. Stevens; Joel T. Nigg; Bonnie J. Nagel
Recent years have witnessed a surge of investigations examining functional brain organization using resting-state functional connectivity MRI (rs-fcMRI). To date, this method has been used to examine systems organization in typical and atypical developing populations. While the majority of these investigations have focused on cortical–cortical interactions, cortical–subcortical interactions also mature into adulthood. Innovative work by Zhang et al. (2008) in adults have identified methods that utilize rs-fcMRI and known thalamo-cortical topographic segregation to identify functional boundaries in the thalamus that are remarkably similar to known thalamic nuclear grouping. However, despite thalamic nuclei being well formed early in development, the developmental trajectory of functional thalamo-cortical relations remains unexplored. Thalamic maps generated by rs-fcMRI are based on functional relationships, and should modify with the dynamic thalamo-cortical changes that occur throughout maturation. To examine this possibility, we employed a strategy as previously described by Zhang et al. to a sample of healthy children, adolescents, and adults. We found strengthening functional connectivity of the cortex with dorsal/anterior subdivisions of the thalamus, with greater connectivity observed in adults versus children. Temporal lobe connectivity with ventral/midline/posterior subdivisions of the thalamus weakened with age. Changes in sensory and motor thalamo-cortical interactions were also identified but were limited. These findings are consistent with known anatomical and physiological cortical–subcortical changes over development. The methods and developmental context provided here will be important for understanding how cortical–subcortical interactions relate to models of typically developing behavior and developmental neuropsychiatric disorders.
Journal of the American Academy of Child and Adolescent Psychiatry | 2011
Bonnie J. Nagel; Deepti Bathula; Megan M. Herting; Colleen F. Schmitt; Christopher D. Kroenke; Damien A. Fair; Joel T. Nigg
OBJECTIVE Identification of biomarkers is a priority for attention-deficit/hyperactivity disorder (ADHD). Studies have documented macrostructural brain alterations in ADHD, but few have examined white matter microstructure, particularly in preadolescent children. Given dramatic white matter maturation across childhood, microstructural differences seen in adolescents and adults with ADHD may reflect compensatory restructuring, rather than early neurophenotypic markers of the disorder. METHOD Using tract-based spatial statistics, mean fractional anisotropy (FA) maps were created using diffusion tensor imaging. FA, mean diffusivity (MD), and associated axial and radial diffusivities were compared between 16 children with ADHD and 20 healthy children (age 7-9 years). RESULTS Youth with ADHD showed decreased FA in frontoparietal, frontolimbic, cerebellar, corona radiata, and temporo-occipital white matter compared with controls. In addition, ADHD was associated with lower MD in the posterior limb of the internal capsule and frontoparietal white matter and greater MD in frontolimbic white matter. Lower axial diffusion and/or higher radial diffusion were differentially observed for youth with ADHD in earlier versus later maturing areas of group FA/MD difference. CONCLUSIONS This study suggests that, even prior to adolescence, ADHD represents a disorder of altered structural connectivity of the brain, characterized by distributed atypical white matter microstructure. In addition, later maturing frontolimbic pathways were abnormal in children with ADHD, likely due to delayed or decreased myelination, a finding not previously demonstrated in the adolescent or adult stages of the disorder. These results suggest that disruptions in white matter microstructure may play a key role in the early pathophysiology of ADHD.