Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bonnie Thiel is active.

Publication


Featured researches published by Bonnie Thiel.


The Lancet | 2016

A blood RNA signature for tuberculosis disease risk: a prospective cohort study

Adam Penn-Nicholson; Thomas J. Scriba; Ethan Thompson; Sara Suliman; Lynn M. Amon; Hassan Mahomed; Mzwandile Erasmus; Wendy Whatney; Gregory D. Hussey; Deborah Abrahams; Fazlin Kafaar; Tony Hawkridge; Suzanne Verver; E. Jane Hughes; Martin O. C. Ota; Jayne S. Sutherland; Rawleigh Howe; Hazel M. Dockrell; W. Henry Boom; Bonnie Thiel; Tom H. M. Ottenhoff; Harriet Mayanja-Kizza; Amelia C. Crampin; Katrina Downing; Mark Hatherill; Joe Valvo; Smitha Shankar; Shreemanta K. Parida; Stefan H. E. Kaufmann; Gerhard Walzl

BACKGROUND Identification of blood biomarkers that prospectively predict progression of Mycobacterium tuberculosis infection to tuberculosis disease might lead to interventions that combat the tuberculosis epidemic. We aimed to assess whether global gene expression measured in whole blood of healthy people allowed identification of prospective signatures of risk of active tuberculosis disease. METHODS In this prospective cohort study, we followed up healthy, South African adolescents aged 12-18 years from the adolescent cohort study (ACS) who were infected with M tuberculosis for 2 years. We collected blood samples from study participants every 6 months and monitored the adolescents for progression to tuberculosis disease. A prospective signature of risk was derived from whole blood RNA sequencing data by comparing participants who developed active tuberculosis disease (progressors) with those who remained healthy (matched controls). After adaptation to multiplex quantitative real-time PCR (qRT-PCR), the signature was used to predict tuberculosis disease in untouched adolescent samples and in samples from independent cohorts of South African and Gambian adult progressors and controls. Participants of the independent cohorts were household contacts of adults with active pulmonary tuberculosis disease. FINDINGS Between July 6, 2005, and April 23, 2007, we enrolled 6363 participants from the ACS study and 4466 from independent South African and Gambian cohorts. 46 progressors and 107 matched controls were identified in the ACS cohort. A 16 gene signature of risk was identified. The signature predicted tuberculosis progression with a sensitivity of 66·1% (95% CI 63·2-68·9) and a specificity of 80·6% (79·2-82·0) in the 12 months preceding tuberculosis diagnosis. The risk signature was validated in an untouched group of adolescents (p=0·018 for RNA sequencing and p=0·0095 for qRT-PCR) and in the independent South African and Gambian cohorts (p values <0·0001 by qRT-PCR) with a sensitivity of 53·7% (42·6-64·3) and a specificity of 82·8% (76·7-86) in the 12 months preceding tuberculosis. INTERPRETATION The whole blood tuberculosis risk signature prospectively identified people at risk of developing active tuberculosis, opening the possibility for targeted intervention to prevent the disease. FUNDING Bill & Melinda Gates Foundation, the National Institutes of Health, Aeras, the European Union, and the South African Medical Research Council.Background Identification of blood biomarkers that prospectively predict progression of Mycobacterium tuberculosis infection to tuberculosis disease may lead to interventions that impact the epidemic. Methods Healthy, M. tuberculosis infected South African adolescents were followed for 2 years; blood was collected every 6 months. A prospective signature of risk was derived from whole blood RNA-Sequencing data by comparing participants who ultimately developed active tuberculosis disease (progressors) with those who remained healthy (matched controls). After adaptation to multiplex qRT-PCR, the signature was used to predict tuberculosis disease in untouched adolescent samples and in samples from independent cohorts of South African and Gambian adult progressors and controls. The latter participants were household contacts of adults with active pulmonary tuberculosis disease. Findings Of 6,363 adolescents screened, 46 progressors and 107 matched controls were identified. A 16 gene signature of risk was identified. The signature predicted tuberculosis progression with a sensitivity of 66·1% (95% confidence interval, 63·2–68·9) and a specificity of 80·6% (79·2–82·0) in the 12 months preceding tuberculosis diagnosis. The risk signature was validated in an untouched group of adolescents (p=0·018 for RNA-Seq and p=0·0095 for qRT-PCR) and in the independent South African and Gambian cohorts (p values <0·0001 by qRT-PCR) with a sensitivity of 53·7% (42·6–64·3) and a specificity of 82·8% (76·7–86) in 12 months preceding tuberculosis. Interpretation The whole blood tuberculosis risk signature prospectively identified persons at risk of developing active tuberculosis, opening the possibility for targeted intervention to prevent the disease. Funding Bill and Melinda Gates Foundation, the National Institutes of Health, Aeras, the European Union and the South African Medical Research Council (detail at end of text).


American Journal of Human Genetics | 1998

Multiple phenotype modeling in gene-mapping studies of quantitative traits: power advantages.

David B. Allison; Bonnie Thiel; Pamela St. Jean; Robert C. Elston; Ming C. Infante; Nicholas J. Schork

Genomewide searches for loci influencing complex human traits and diseases such as diabetes, hypertension, and obesity are often plagued by low power and interpretive difficulties. Attempts to remedy these difficulties have typically relied on, and have promoted the use of, novel subject-ascertainment schemes, larger sample sizes, a greater density of DNA markers, and more-sophisticated statistical modeling and analysis strategies. Many of these remedies can be costly to implement. We investigate the utility of a simple statistical model for the mapping of quantitative-trait loci that incorporates multiple phenotypic or diagnostic endpoints into a gene-mapping analysis. The approach considers finding a linear combination of multiple phenotypic values that maximizes the evidence for linkage to a locus. Our results suggest that substantial increases in the power to map loci can be obtained with the proposed technique, although the increase in power obtained is a function of the size and direction of the residual correlation among the phenotypes used in the analysis. Extensive simulation studies are described that justify these claims, for cases in which two phenotypic measures are analyzed. This approach can be easily extended to cover more-complex situations and may provide a basis for more insightful genetic-analysis paradigms.


Clinical and Vaccine Immunology | 2009

Immunogenicity of Novel DosR Regulon-Encoded Candidate Antigens of Mycobacterium tuberculosis in Three High-Burden Populations in Africa

Gillian F. Black; Bonnie Thiel; Martin O. C. Ota; Shreemanta K. Parida; Richard A. Adegbola; W. Henry Boom; Hazel M. Dockrell; Kees L. M. C. Franken; Annemiek H. Friggen; Philip C. Hill; Michèl R. Klein; Maeve K. Lalor; Harriet Mayanja; Gary K. Schoolnik; Kim Stanley; Karin Weldingh; Stefan H. E. Kaufmann; Gerhard Walzl; Tom H. M. Ottenhoff

ABSTRACT Increasing knowledge about DosR regulon-encoded proteins has led us to produce novel Mycobacterium tuberculosis antigens for immunogenicity testing in human populations in three countries in Africa to which tuberculosis (TB) is endemic. A total of 131 tuberculin skin test-positive and/or ESAT-6/CFP10-positive, human immunodeficiency virus-negative adult household contacts of active pulmonary TB cases from South Africa (n = 56), The Gambia (n = 26), and Uganda (n = 49) were tested for gamma interferon responses to 7 classical and 51 DosR regulon-encoded M. tuberculosis recombinant protein antigens. ESAT-6/CFP10 fusion protein evoked responses in >75% of study participants in all three countries. Of the DosR regulon-encoded antigens tested, Rv1733c was the most commonly recognized by participants from both South Africa and Uganda and the third most commonly recognized antigen in The Gambia. The four most frequently recognized DosR regulon-encoded antigens in Uganda (Rv1733c, Rv0081, Rv1735c, and Rv1737c) included the three most immunogenic antigens in South Africa. In contrast, Rv3131 induced the highest percentage of responders in Gambian contacts (38%), compared to only 3.4% of Ugandan contacts and no South African contacts. Appreciable percentages of TB contacts with a high likelihood of latent M. tuberculosis infection responded to several novel DosR regulon-encoded M. tuberculosis proteins. In addition to significant similarities in antigen recognition profiles between the three African population groups, there were also disparities, which may stem from genetic differences between both pathogen and host populations. Our findings have implications for the selection of potential TB vaccine candidates and for determining biosignatures of latent M. tuberculosis infection, active TB disease, and protective immunity.


Journal of Immunology | 2002

A Genetic Determinant That Specifically Regulates the Frequency of Hematopoietic Stem Cells

Sean J. Morrison; Dalong Qian; Libuse Jerabek; Bonnie Thiel; In-Kyung Park; Preston S. Ford; Mark J. Kiel; Nicholas J. Schork; Irving L. Weissman; Michael F. Clarke

The regulation of hematopoietic stem cell (HSC) homeostasis is not well understood. We screened for genetic polymorphisms that were linked to differences between mouse strains in the numbers of long-term reconstituting HSCs or restricted progenitors in the bone marrow. AKR/J mice had significantly higher frequencies and numbers of both HSCs and restricted progenitors in their bone marrow than C57BL/Ka-Thy-1.1 mice. The C57BL/Ka-Thy-1.1 alleles were partially dominant. A locus on chromosome 17, including the H-2 complex, was significantly linked to the frequency of long-term self-renewing HSCs but showed no evidence of linkage to the frequency of restricted progenitors. Conversely, a chromosome 1 locus exhibited suggestive linkage to restricted progenitor frequencies but was not linked to HSC frequency. This demonstrates that there are distinct genetic determinants of the frequencies of HSCs and restricted progenitors in vivo. The AKR/J chromosome 17 locus was not sufficient to increase HSC frequencies when bred onto a C57BL background. This suggests that to affect HSC frequencies, the product(s) of this locus likely depend on interactions with unlinked modifying loci.


Advances in Genetics | 2001

14 The future of genetic case-control studies

Nicholas J. Schork; Dani Fallin; Bonnie Thiel; Xiping Xu; Ulrich Broeckel; Howard J. Jacob; Daniel Cohen

The case-control study design has been a veritable workhorse in epidemiological research since its inception and acceptance as a valid and valued field of inquiry. The reasons for this owe to the simplicity of the required sampling and the (potential) ease of analysis and interpretation of results. Unfortunately, there are a number of problems that plague the use of the case-control design in assessing relationships between genetic variation and disease susceptibility in the population at large. Many of these problems are entirely analogous to problems that inhere in applications of the case-control design in nongenetic settings. These problems include stratification, the assessment of statistical significance, heterogeneity, and the interpretation of multiple outcomes or phenotypic information. In this chapter we describe 10 problems thought to plague genetic case-control studies and offer potential solutions to each. Many of our proposed solutions require the use of multiple DNA markers to accommodate the genetic background of the individuals sampled as cases and controls. It is hoped that our discussions and proposals will spark further debate about the analysis and ultimate utility of the case-control study in genetic epidemiology research.


American Journal of Hypertension | 2003

A genome-wide linkage analysis investigating the determinants of blood pressure in whites and African Americans.

Bonnie Thiel; Aravinda Chakravarti; Richard S. Cooper; Amy Luke; Susan Lewis; Audrey Lynn; Hemant K. Tiwari; Nicholas J. Schork; Alan B. Weder

Evidence for genomic regions influencing systolic and diastolic blood pressure (BP) were assessed in a whole genome linkage analysis in 211 African American and 160 white families as part of the GenNet network of the National Heart, Lung and Blood Institute-sponsored Family Blood Pressure Program. Multipoint regression and variance components linkage methods were used to analyze 372 polymorphic markers. Statistically compelling evidence for linkage (P values .0057 and .00023, respectively) was found on chromosome 1. Our results support the idea that BP regulation is most likely governed by multiple genetic loci, each with a relatively weak effect on BP in the population at large.


Infection and Immunity | 2011

Mycobacterium tuberculosis Lipoproteins Directly Regulate Human Memory CD4 T Cell Activation via Toll-Like Receptors 1 and 2

Christina Lancioni; Qing Li; Jeremy J. Thomas; Xue Dong Ding; Bonnie Thiel; Michael G. Drage; Nicole D. Pecora; Assem G. Ziady; Samuel Shank; Clifford V. Harding; W. Henry Boom; Roxana E. Rojas

ABSTRACT The success of Mycobacterium tuberculosis as a pathogen relies on its ability to regulate the host immune response. M. tuberculosis can manipulate adaptive T cell responses indirectly by modulating antigen-presenting cell (APC) function or by directly interacting with T cells. Little is known about the role of M. tuberculosis molecules in direct regulation of T cell function. Using a biochemical approach, we identified lipoproteins LprG and LpqH as major molecules in M. tuberculosis lysate responsible for costimulation of primary human CD4+ T cells. In the absence of APCs, activation of memory CD4+ T cells with LprG or LpqH in combination with anti-CD3 antibody induces Th1 cytokine secretion and cellular proliferation. Lipoprotein-induced T cell costimulation was inhibited by blocking antibodies to Toll-like receptor 2 (TLR2) and TLR1, indicating that human CD4+ T cells can use TLR2/TLR1 heterodimers to directly respond to M. tuberculosis products. M. tuberculosis lipoproteins induced NF-κB activation in CD4+ T cells in the absence of TCR co-engagement. Thus, TLR2/TLR1 engagement alone by M. tuberculosis lipoprotein triggered intracellular signaling, but upregulation of cytokine production and proliferation required co-engagement of the TCR. In conclusion, our results demonstrate that M. tuberculosis lipoproteins LprG and LpqH participate in the regulation of adaptive immunity not only by inducing cytokine secretion and costimulatory molecules in innate immune cells but also through directly regulating the activation of memory T lymphocytes.


American Journal of Human Genetics | 2002

Quantitative-Trait Loci on Chromosomes 1, 2, 3, 4, 8, 9, 11, 12, and 18 Control Variation in Levels of T and B Lymphocyte Subpopulations

Margaret A. Hall; Paul J. Norman; Bonnie Thiel; Hemant K. Tiwari; A. Peiffer; Robert Vaughan; S. Prescott; M. Leppert; Nicholas J. Schork; Jerry S. Lanchbury

Lymphocyte subpopulation levels are used for prognosis and monitoring of a variety of human diseases, especially those with an infectious etiology. As a primary step to defining the major gene variation underlying these phenotypes, we conducted the first whole-genome screen for quantitative variation in lymphocyte count, CD4 T cell, CD8 T cell, B cell, and natural killer cell numbers, as well as CD4:CD8 ratio. The screen was performed in 15 of the CEPH families that form the main human genome genetic project mapping resource. Quantitative-trait loci (QTLs) that account for significant proportions of the phenotypic variance of lymphocyte subpopulations were detected on chromosomes 1, 2, 3, 4, 8, 9, 11, 12, and 18. The most significant QTL found was for CD4 levels on chromosome 8 (empirical P=.00005). Two regions of chromosome 4 showed significant linkage to CD4:CD8 ratio (empirical P=.00007 and P=.003). A QTL for the highly correlated measures of CD4 and CD19 levels colocalized at 18q21 (both P=.003). Similarly, a shared region of chromosome 1 was linked to CD8 and CD19 levels (P=.0001 and P=.002, respectively). Several of the identified chromosome regions are likely to harbor polymorphic candidate genes responsible for these important human phenotypes. Their discovery has important implications for understanding the generation of the immune repertoire and understanding immune-system homeostasis. More generally, these data show the power of an integrated human gene-mapping approach for heritable molecular phenotypes, using large pedigrees that have been extensively genotyped.


PLOS ONE | 2013

Analysis of Host Responses to Mycobacterium tuberculosis Antigens in a Multi-Site Study of Subjects with Different TB and HIV Infection States in Sub-Saharan Africa

Jayne S. Sutherland; Maeve K. Lalor; Gillian F. Black; Lyn R. Ambrose; Andre G. Loxton; Novel N. Chegou; Desta Kassa; Adane Mihret; Rawleigh Howe; Harriet Mayanja-Kizza; Marie P. Gomez; Simon Donkor; Kees L. M. C. Franken; Willem A. Hanekom; Michèl R. Klein; Shreemanta K. Parida; W. Henry Boom; Bonnie Thiel; Amelia C. Crampin; Martin O. C. Ota; Gerhard Walzl; Tom H. M. Ottenhoff; Hazel M. Dockrell; Stefan H. E. Kaufmann

Background Tuberculosis (TB) remains a global health threat with 9 million new cases and 1.4 million deaths per year. In order to develop a protective vaccine, we need to define the antigens expressed by Mycobacterium tuberculosis (Mtb), which are relevant to protective immunity in high-endemic areas. Methods We analysed responses to 23 Mtb antigens in a total of 1247 subjects with different HIV and TB status across 5 geographically diverse sites in Africa (South Africa, The Gambia, Ethiopia, Malawi and Uganda). We used a 7-day whole blood assay followed by IFN-γ ELISA on the supernatants. Antigens included PPD, ESAT-6 and Ag85B (dominant antigens) together with novel resuscitation-promoting factors (rpf), reactivation proteins, latency (Mtb DosR regulon-encoded) antigens, starvation-induced antigens and secreted antigens. Results There was variation between sites in responses to the antigens, presumably due to underlying genetic and environmental differences. When results from all sites were combined, HIV- subjects with active TB showed significantly lower responses compared to both TST- and TST+ contacts to latency antigens (Rv0569, Rv1733, Rv1735, Rv1737) and the rpf Rv0867; whilst responses to ESAT-6/CFP-10 fusion protein (EC), PPD, Rv2029, TB10.3, and TB10.4 were significantly higher in TST+ contacts (LTBI) compared to TB and TST- contacts fewer differences were seen in subjects with HIV co-infection, with responses to the mitogen PHA significantly lower in subjects with active TB compared to those with LTBI and no difference with any antigen. Conclusions Our multi-site study design for testing novel Mtb antigens revealed promising antigens for future vaccine development. The IFN-γ ELISA is a cheap and useful tool for screening potential antigenicity in subjects with different ethnic backgrounds and across a spectrum of TB and HIV infection states. Analysis of cytokines other than IFN-γ is currently on-going to determine correlates of protection, which may be useful for vaccine efficacy trials.


Clinical Microbiology and Infection | 2014

Differential gene expression of activating Fcγ receptor classifies active tuberculosis regardless of human immunodeficiency virus status or ethnicity

Jayne S. Sutherland; Andre G. Loxton; Mariëlle C. Haks; Desta Kassa; L.R Ambrose; Ji-Sook Lee; Leonie Ran; D. van Baarle; Jeroen Maertzdorf; Rawleigh Howe; Harriet Mayanja-Kizza; W.H. Boom; Bonnie Thiel; Amelia C. Crampin; Willem A. Hanekom; Martin O. C. Ota; Hazel M. Dockrell; Gerhard Walzl; Stefan H. E. Kaufmann; Tom H. M. Ottenhoff

New diagnostics and vaccines for tuberculosis (TB) are urgently needed, but require an understanding of the requirements for protection from/susceptibility to TB. Previous studies have used unbiased approaches to determine gene signatures in single-site populations. The present study utilized a targeted approach, reverse transcriptase multiplex ligation-dependent probe amplification (RT-MLPA), to validate these genes in a multisite study. We analysed ex vivo whole blood RNA from a total of 523 participants across four sub-Saharan countries (Ethiopia, Malawi, South Africa, and The Gambia) with differences in TB and human immunodeficiency virus (HIV) status. We found a number of genes that were expressed at significantly lower levels in participants with active disease than in those with latent TB infection (LTBI), with restoration following successful TB treatment. The most consistent classifier of active disease was FCGR1A (high-affinity IgG Fc receptor 1 (CD64)), which was the only marker expressed at significantly higher levels in participants with active TB than in those with LTBI before treatment regardless of HIV status or genetic background. This is the first study to identify a biomarker for TB that is not affected by HIV status or geo-genetic differences. These data provide valuable clues for understanding TB pathogenesis, and also provide a proof-of-concept for the use of RT-MLPA in rapid and inexpensive validation of unbiased gene expression findings.

Collaboration


Dive into the Bonnie Thiel's collaboration.

Top Co-Authors

Avatar

W. Henry Boom

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John L. Johnson

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Harriet Mayanja-Kizza

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Charles M. Bark

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Sarah Zalwango

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom H. M. Ottenhoff

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Catherine M. Stein

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

LaShaunda L. Malone

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge