Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bonsu Ku is active.

Publication


Featured researches published by Bonsu Ku.


Nature Cell Biology | 2006

Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG.

Chengyu Liang; Pinghui Feng; Bonsu Ku; Iris Dotan; Dan Canaani; Byung-Ha Oh; Jae U. Jung

Autophagy, the degradation of cytoplasmic components, is an evolutionarily conserved homeostatic process involved in environmental adaptation, lifespan determination and tumour development. The tumor suppressor Beclin1 is part of the PI(3) kinase class III (PI(3)KC3) lipid-kinase complex that induces autophagy. The autophagic activity of the Beclin1–PI(3)KC3 complex, however, is suppressed by Bcl-2. Here, we report the identification of a novel coiled–coil UV irradiation resistance-associated gene (UVRAG) as a positive regulator of the Beclin1–PI(3)KC3 complex. UVRAG, a tumour suppressor candidate that is monoallelically mutated at high frequency in human colon cancers, associates with the Beclin1–Bcl-2–PI(3)KC3 multiprotein complex, where UVRAG and Beclin1 interdependently induce autophagy. UVRAG-mediated activation of the Beclin1–PI(3)KC3 complex promotes autophagy and also suppresses the proliferation and tumorigenicity of human colon cancer cells. These results identify UVRAG as an essential component of the Beclin1–PI(3)KC3 lipid kinase complex that is an important signalling checkpoint for autophagy and tumour-cell growth.


PLOS Pathogens | 2008

Structural and Biochemical Bases for the Inhibition of Autophagy and Apoptosis by Viral BCL-2 of Murine γ-Herpesvirus 68

Bonsu Ku; Jae-Sung Woo; Chengyu Liang; Kwang-Hoon Lee; Hyang-Suk Hong; Xiaofei E; Key-Sun Kim; Jae U. Jung; Byung-Ha Oh

All gammaherpesviruses express homologues of antiapoptotic B-cell lymphoma-2 (BCL-2) to counter the clearance of infected cells by host antiviral defense machineries. To gain insights into the action mechanisms of these viral BCL-2 proteins, we carried out structural and biochemical analyses on the interactions of M11, a viral BCL-2 of murine γ-herpesvirus 68, with a fragment of proautophagic Beclin1 and BCL-2 homology 3 (BH3) domain-containing peptides derived from an array of proapoptotic BCL-2 family proteins. Mainly through hydrophobic interactions, M11 bound the BH3-like domain of Beclin1 with a dissociation constant of 40 nanomole, a markedly tighter affinity compared to the 1.7 micromolar binding affinity between cellular BCL-2 and Beclin1. Consistently, M11 inhibited autophagy more efficiently than BCL-2 in NIH3T3 cells. M11 also interacted tightly with a BH3 domain peptide of BAK and those of the upstream BH3-only proteins BIM, BID, BMF, PUMA, and Noxa, but weakly with that of BAX. These results collectively suggest that M11 potently inhibits Beclin1 in addition to broadly neutralizing the proapoptotic BCL-2 family in a similar but distinctive way from cellular BCL-2, and that the Beclin1-mediated autophagy may be a main target of the virus.


Cell Research | 2011

Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX

Bonsu Ku; Chengyu Liang; Jae U. Jung; Byung-Ha Oh

Interactions between the BCL-2 family proteins determine the cells fate to live or die. How they interact with each other to regulate apoptosis remains as an unsettled central issue. So far, the antiapoptotic BCL-2 proteins are thought to interact with BAX weakly, but the physiological significance of this interaction has been vague. Herein, we show that recombinant BCL-2 and BCL-w interact potently with a BCL-2 homology (BH) 3 domain-containing peptide derived from BAX, exhibiting the dissociation constants of 15 and 23 nM, respectively. To clarify the basis for this strong interaction, we determined the three-dimensional structure of a complex of BCL-2 with a BAX peptide spanning its BH3 domain. It revealed that their interactions extended beyond the canonical BH3 domain and involved three nonconserved charged residues of BAX. A novel BAX variant, containing the alanine substitution of these three residues, had greatly impaired affinity for BCL-2 and BCL-w, but was otherwise indistinguishable from wild-type BAX. Critically, the apoptotic activity of the BAX variant could not be restrained by BCL-2 and BCL-w, pointing that the observed tight interactions are critical for regulating BAX activation. We also comprehensively quantified the binding affinities between the three BCL-2 subfamily proteins. Collectively, the data show that due to the high affinity of BAX for BCL-2, BCL-w and A1, and of BAK for BCL-XL, MCL-1 and A1, only a subset of BH3-only proteins, commonly including BIM, BID and PUMA, could be expected to free BAX or BAK from the antiapoptotic BCL-2 proteins to elicit apoptosis.


Cell | 2009

Structural studies of a bacterial condensin complex reveal ATP-dependent disruption of intersubunit interactions.

Jae-Sung Woo; Jae-Hong Lim; H. J. Shin; Min-Kang Suh; Bonsu Ku; Kwang-Hoon Lee; Keehyoung Joo; Howard Robinson; Jooyoung Lee; Sam-Yong Park; Nam-Chul Ha; Byung-Ha Oh

Condensins are key mediators of chromosome condensation across organisms. Like other condensins, the bacterial MukBEF condensin complex consists of an SMC family protein dimer containing two ATPase head domains, MukB, and two interacting subunits, MukE and MukF. We report complete structural views of the intersubunit interactions of this condensin along with ensuing studies that reveal a role for the ATPase activity of MukB. MukE and MukF together form an elongated dimeric frame, and MukFs C-terminal winged-helix domains (C-WHDs) bind MukB heads to constitute closed ring-like structures. Surprisingly, one of the two bound C-WHDs is forced to detach upon ATP-mediated engagement of MukB heads. This detachment reaction depends on the linker segment preceding the C-WHD, and mutations on the linker restrict cell growth. Thus ATP-dependent transient disruption of the MukB-MukF interaction, which creates openings in condensin ring structures, is likely to be a critical feature of the functional mechanism of condensins.


The EMBO Journal | 2010

Structural insights into the dual nucleotide exchange and GDI displacement activity of SidM/DrrA

Hye-Young Suh; Dong-Won Lee; Kwang-Hoon Lee; Bonsu Ku; Sung-Jin Choi; Jae-Sung Woo; Yeon-Gil Kim; Byung-Ha Oh

GDP‐bound prenylated Rabs, sequestered by GDI (GDP dissociation inhibitor) in the cytosol, are delivered to destined sub‐cellular compartment and subsequently activated by GEFs (guanine nucleotide exchange factors) catalysing GDP‐to‐GTP exchange. The dissociation of GDI from Rabs is believed to require a GDF (GDI displacement factor). Only two RabGDFs, human PRA‐1 and Legionella pneumophila SidM/DrrA, have been identified so far and the molecular mechanism of GDF is elusive. Here, we present the structure of a SidM/DrrA fragment possessing dual GEF and GDF activity in complex with Rab1. SidM/DrrA reconfigures the Switch regions of the GTPase domain of Rab1, as eukaryotic GEFs do toward cognate Rabs. Structure‐based mutational analyses show that the surface of SidM/DrrA, catalysing nucleotide exchange, is involved in GDI1 displacement from prenylated Rab1:GDP. In comparison with an eukaryotic GEF TRAPP I, this bacterial GEF/GDF exhibits high binding affinity for Rab1 with GDP retained at the active site, which appears as the key feature for the GDF activity of the protein.


Autophagy | 2007

UVRAG: a new player in autophagy and tumor cell growth.

Chengyu Liang; Pinghui Feng; Bonsu Ku; Byung-Ha Oh; Jae U. Jung

Autophagy has a well-documented role in the maintenance of homeostasis and the response to stressful environments and it is often deregulated in various human diseases including cancer. The regulation of the Beclin 1-PI3KC3 complex lipid kinase activity is a critical element in the autophagy signaling pathway. Previous studies1 have demonstrated that Beclin 1-PI3KC3-mediated autophagy is negatively regulated by a proto-oncogene Bcl-2. We have recently identified a novel coiled-coil UVRAG tumor suppressor candidate, which positively engages in Beclin 1-dependent autophagy. UVRAG interacts with Beclin 1, leading to activation of autophagy and thereof inhibition of tumorigenesis. This finding adds a new player to the emerging picture of the autophagy network, underscoring the importance of the coordinated activity between Bcl-2 and UVRAG in the regulation of Beclin 1-PI3KC3- mediated autophagy and tumor cell control. Addendum to: Autophagic and Tumor Suppressor Activity of a Novel Beclin 1-Binding Protein UVRAG Chengyu Liang, Pinghui Feng, Bonsu Ku, Iris Dotan, Dan Canaani, Byung-Ha Oh and Jae U. Jung Nature Cell Biol 2006; 8:688-99


PLOS Pathogens | 2012

VipD of Legionella pneumophila Targets Activated Rab5 and Rab22 to Interfere with Endosomal Trafficking in Macrophages

Bonsu Ku; Kwang-Hoon Lee; Wei Sun Park; Chul-Su Yang; Jianning Ge; Seong-Gyu Lee; Sun-Shin Cha; Feng Shao; Won Do Heo; Jae U. Jung; Byung-Ha Oh

Upon phagocytosis, Legionella pneumophila translocates numerous effector proteins into host cells to perturb cellular metabolism and immunity, ultimately establishing intracellular survival and growth. VipD of L. pneumophila belongs to a family of bacterial effectors that contain the N-terminal lipase domain and the C-terminal domain with an unknown function. We report the crystal structure of VipD and show that its C-terminal domain robustly interferes with endosomal trafficking through tight and selective interactions with Rab5 and Rab22. This domain, which is not significantly similar to any known protein structure, potently interacts with the GTP-bound active form of the two Rabs by recognizing a hydrophobic triad conserved in Rabs. These interactions prevent Rab5 and Rab22 from binding to downstream effectors Rabaptin-5, Rabenosyn-5 and EEA1, consequently blocking endosomal trafficking and subsequent lysosomal degradation of endocytic materials in macrophage cells. Together, this work reveals endosomal trafficking as a target of L. pneumophila and delineates the underlying molecular mechanism.


Autophagy | 2008

An insight into the mechanistic role of Beclin 1 and its inhibition by prosurvival Bcl-2 family proteins.

Bonsu Ku; Jae-Sung Woo; Chengyu Liang; Kwang-Hoon Lee; Jae U. Jung; Byung-Ha Oh

A multiprotein complex composed of Beclin 1, PI(3)KC3 and UVRAG promotes autophagosome formation, while this activity is suppressed by a cohort of antiapoptotic Bcl-2 family members. Recently, we showed that a viral Bcl-2 of murine γ-herpesvirus 68, known as M11, binds to Beclin 1 with markedly high affinity in comparison with cellular Bcl-2 or Bcl-XL that interacts with Beclin 1 weakly.1 Furthermore, the binding affinity directly correlated with the potency of inhibition of autophagosome formation in cells. Herein, we present additional data showing that Beclin 1 forms a large homo-oligomer, and this oligomerization is partly disrupted by the binding of M11. Oligomerized Beclin 1 is proposed to serve as a platform enabling a concerted action of many molecules of the associating proteins, including Bif-1 that could be directly involved in autophagosome biogenesis on membranes owing to its BAR domain. Addendum to: Ku B, Woo J-S, Liang C, Lee K-H, Hong H-S, Xiaofei E, Kim K-S, Jung JU, Oh B-H. Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral BCL-2 of murine γ-herpesvirus 68. PLoS Pathog 2008; 4:e25.


Cell Death & Differentiation | 2011

Downregulation of autophagy by Bcl-2 promotes MCF7 breast cancer cell growth independent of its inhibition of apoptosis

Soohwan Oh; Xiaofei E; Duojiao Ni; Sara Dolatshahi Pirooz; June Yong Lee; Dongwook Lee; Zhen Zhao; Stacy Lee; Hye-Ra Lee; Bonsu Ku; Timothy F. Kowalik; Sue Ellen Martin; Byung-Ha Oh; Jae U. Jung; Chengyu Liang

The anti-apoptotic Bcl-2 protein, which confers oncogenic transformation and drug resistance in most human cancers, including breast cancer, has recently been shown to effectively counteract autophagy by directly targeting Beclin1, an essential autophagy mediator and tumor suppressor. However, it remains unknown whether autophagy inhibition contributes to Bcl-2-mediated oncogenesis. Here, by using a loss-of-function mutagenesis study, we show that Bcl-2-mediated antagonism of autophagy has a critical role in enhancing the tumorigenic properties of MCF7 breast cancer cells independent of its anti-apoptosis activity. A Bcl-2 mutant defective in apoptosis inhibition but competent for autophagy suppression promotes MCF7 breast cancer cell growth in vitro and in vivo as efficiently as wild-type Bcl-2. The growth-promoting activity of this Bcl-2 mutant is strongly correlated with its suppression of Beclin1-dependent autophagy, leading to sustained p62 expression and increased DNA damage in xenograft tumors, which may directly contribute to tumorigenesis. Thus, the anti-autophagic property of Bcl-2 is a key feature of Bcl-2-mediated oncogenesis and may in some contexts, serve as an attractive target for breast and other cancer therapies.


Proteins | 2009

Crystal Structure of the Mukb Hinge Domain with Coiled-Coil Stretches and its Functional Implications.

Bonsu Ku; Jae-Hong Lim; H. J. Shin; Seong-Yeol Shin; Byung-Ha Oh

The structural maintenance of chromosomes (SMC) family proteins are commonly found in the multiprotein complexes involved in chromosome organization, including chromosome condensation and sister chromatid cohesion. These proteins are characterized by forming a V‐shaped homo‐ or heterodimeric structure with two long coiled‐coil arms having two ATPase head domains at the distal ends. The hinge domain, located in the middle of the coiled coil, forms the dimer interface. In addition to being the dimerization module, SMC hinges appear to play other roles, including the gateway function for DNA entry into the cohesin complex. Herein, we report the homodimeric structure of the hinge domain of Escherichia coli MukB, which forms a prokaryotic condensin complex with two non‐SMC subunits, MukE and MukF. In contrast with SMC hinge of Thermotoga maritima which has a sizable central hole at the dimer interface, MukB hinge forms a constricted dimer interface lacking a hole. Under our assay conditions, MukB hinge does not interact with DNA in accordance with the absence of a notable positively charged surface patch. The function of MukB hinge appears to be limited to dimerization of two copies of MukB molecules. Proteins 2010.

Collaboration


Dive into the Bonsu Ku's collaboration.

Top Co-Authors

Avatar

Seung Jun Kim

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Jae U. Jung

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hye Seon Lee

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Kwang-Hoon Lee

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chengyu Liang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Bo Yeon Kim

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Ho-Chul Shin

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Jae-Sung Woo

Pohang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge