Bor Kos
University of Ljubljana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bor Kos.
Biomedical Engineering Online | 2014
Damijan Miklavčič; Barbara Mali; Bor Kos; Richard Heller; Gregor Sersa
Electrochemotherapy is a local treatment of cancer employing electric pulses to improve transmembrane transfer of cytotoxic drugs. In this paper we discuss electrochemotherapy from the perspective of biomedical engineering and review the steps needed to move such a treatment from initial prototypes into clinical practice. In the paper also basic theory of electrochemotherapy and preclinical studies in vitro and in vivo are briefly reviewed. Following this we present a short review of recent clinical publications and discuss implementation of electrochemotherapy into standard of care for treatment of skin tumors, and use of electrochemotherapy for other targets such as head and neck cancer, deep-seated tumors in the liver and intestinal tract, and brain metastases. Electrodes used in these specific cases are presented with their typical voltage amplitudes used in electrochemotherapy. Finally, key points on what should be investigated in the future are presented and discussed.
Biomedical Engineering Online | 2010
Damijan Miklavčič; Marko Snoj; Anze Zupanic; Bor Kos; Maja Cemazar; Mateja Kropivnik; Matej Bracko; Tjaša Pečnik; Eldar M. Gadzijev; Gregor Sersa
BackgroundElectrochemotherapy treats tumors by combining specific chemotherapeutic drugs with an intracellular target and electric pulses, which increases drug uptake into the tumor cells. Electrochemotherapy has been successfully used for treatment of easily accessible superficial tumor nodules. In this paper, we present the first case of deep-seated tumor electrochemotherapy based on numerical treatment planning.MethodsThe aim of our study was to treat a melanoma metastasis in the thigh of a patient. Treatment planning for electrode positioning and electrical pulse parameters was performed for two different electrode configurations: one with four and another with five long needle electrodes. During the procedure, the four electrode treatment plan was adopted and the patient was treated accordingly by electrochemotherapy with bleomycin. The response to treatment was clinically and radiographically evaluated. Due to a partial response of the treated tumor, the metastasis was surgically removed after 2 months and pathological analysis was performed.ResultsA partial response of the tumor to electrochemotherapy was obtained. Histologically, the metastasis showed partial necrosis due to electrochemotherapy, estimated to represent 40-50% of the tumor. Based on the data obtained, we re-evaluated the electrical treatment parameters in order to correlate the treatment plan with the clinical response. Electrode positions in the numerical model were updated according to the actual positions during treatment. We compared the maximum value of the measured electric current with the current predicted by the model and good agreement was obtained. Finally, tumor coverage with an electric field above the reversible threshold was recalculated and determined to be approximately 94%. Therefore, according to the calculations, a small volume of tumor cells remained viable after electrochemotherapy, and these were sufficient for tumor regrowth.ConclusionsIn this, the first reported clinical case, deep-seated melanoma metastasis in the thigh of the patient was treated by electrochemotherapy, according to a treatment plan obtained by numerical modeling and optimization. Although only a partial response was obtained, the presented work demonstrates that treatment of deep-seated tumor nodules by electrochemotherapy is feasible and sets the ground for numerical treatment planning-based electrochemotherapy.Trial registrationEudraCT:2008-008290-54
Technology in Cancer Research & Treatment | 2011
Ibrahim Edhemovic; Eldar M. Gadzijev; Erik Brecelj; Damijan Miklavčič; Bor Kos; Anze Zupanic; Barbara Mali; Tomaz Jarm; Denis Pavliha; Marija Marčan; Gorana Gasljevic; Vojka Gorjup; Maja Marolt Music; T. Pecnik Vavpotic; Maja Cemazar; Marko Snoj; Gregor Sersa
Electrochemotherapy is now in development for treatment of deep-seated tumors, like in bones and internal organs, such as liver. The technology is available with a newly developed electric pulse generator and long needle electrodes; however the procedures for the treatment are not standardized yet. In order to describe the treatment procedure, including treatment planning, within the ongoing clinical study, a case of successful treatment of a solitary metastasis in the liver of colorectal cancer is presented. The procedure was performed intraoperatively by inserting long needle electrodes, two in the center of the tumor and four around the tumor into the normal tissue. The insertion of electrodes proved to be feasible and was done according to the treatment plan, prepared by numerical modeling. After intravenous bolus injection of bleomycin the tumor was exposed to electric pulses. The delivery of the electric pulses did not interfere with functioning of the heart, since the pulses were synchronized with electrocardiogram in order to be delivered outside the vulnerable period of the ventricles. Also the post treatment period was uneventful without side effects. Re-operation of the treated metastasis demonstrated feasibility of the reoperation, without secondary effects of electrochemotherapy on normal tissue. Good antitumor effectiveness with complete tumor destruction was confirmed with histological analysis. The patient is disease-free 16 months after the procedure. In conclusion, treatment procedure for electrochemotherapy proved to be a feasible technological approach for treatment of liver metastasis. Due to the absence of the side effects and the first complete destruction of the treated tumor, treatment procedure for electrochemotherapy seems to be a safe method for treatment of liver metastases with good treatment effectiveness even in difficult-to-reach locations.
Journal of Surgical Oncology | 2014
Ibrahim Edhemovic; Erik Brecelj; Gorana Gasljevic; Maja Marolt Music; Vojka Gorjup; Barbara Mali; Tomaz Jarm; Bor Kos; Denis Pavliha; Biljana Grcar Kuzmanov; Maja Cemazar; Marko Snoj; Damijan Miklavčič; Eldar M. Gadzijev; Gregor Sersa
Electrochemotherapy is effective in treatment of various cutaneous tumors and could be translated into treatment of deep‐seated tumors. With this aim a prospective pilot study was conducted to evaluate feasibility, safety, and efficacy of intraoperative electrochemotherapy in the treatment of colorectal liver metastases.
The Journal of Membrane Biology | 2010
Bor Kos; Anze Zupanic; Tadej Kotnik; Marko Snoj; Gregor Sersa; Damijan Miklavčič
Treatment of cutaneous and subcutaneous tumors with electrochemotherapy has become a regular clinical method, while treatment of deep-seated tumors is still at an early stage of development. We present a method for preparing a dedicated patient-specific, computer-optimized treatment plan for electrochemotherapy of deep-seated tumors based on medical images. The treatment plan takes into account the patient’s anatomy, tissue conductivity changes during electroporation and the constraints of the pulse generator. Analysis of the robustness of a treatment plan made with this method shows that the effectiveness of the treatment is not affected significantly by small single errors in electrode positioning. However, when many errors occur simultaneously, the resulting drop in effectiveness is larger, which means that it is necessary to be as accurate as possible in electrode positioning. The largest effect on treatment effectiveness stems from uncertainties in dielectric properties and electroporation thresholds of treated tumors and surrounding tissues, which emphasizes the need for more accurate measurements and more research. The presented methods for treatment planning and robustness analysis allow quantification of the treatment reproducibility and enable the setting of suitable safety margins to improve the likelihood of successful treatment of deep-seated tumors by electrochemotherapy.
Physics in Medicine and Biology | 2012
Anze Zupanic; Bor Kos; Damijan Miklavčič
In recent years, cancer electrochemotherapy (ECT), gene electrotransfer for gene therapy and DNA vaccination (GET) and tissue ablation with irreversible electroporation (IRE) have all entered clinical practice. We present a method for a personalized treatment planning procedure for ECT, GET and IRE, based on medical image analysis, numerical modelling of electroporation and optimization with the genetic algorithm, and several visualization tools for treatment plan assessment. Each treatment plan provides the attending physician with optimal positions of electrodes in the body and electric pulse parameters for optimal electroporation of the target tissues. For the studied case of a deep-seated tumour, the optimal treatment plans for ECT and IRE require at least two electrodes to be inserted into the target tissue, thus lowering the necessary voltage for electroporation and limiting damage to the surrounding healthy tissue. In GET, it is necessary to place the electrodes outside the target tissue to prevent damage to target cells intended to express the transfected genes. The presented treatment planning procedure is a valuable tool for clinical and experimental use and evaluation of electroporation-based treatments.
Radiology and Oncology | 2015
Bor Kos; Peter Voigt; Damijan Miklavčič; Michael Moche
Abstract Background. Irreversible electroporation (IRE) is a tissue ablation method, which relies on the phenomenon of electroporation. When cells are exposed to a sufficiently electric field, the plasma membrane is disrupted and cells undergo an apoptotic or necrotic cell death. Although heating effects are known IRE is considered as non-thermal ablation technique and is currently applied to treat tumors in locations where thermal ablation techniques are contraindicated. Materials and methods. The manufacturer of the only commercially available pulse generator for IRE recommends a voltage-to-distance ratio of 1500 to 1700 V/cm for treating tumors in the liver. However, major blood vessels can influence the electric field distribution. We present a method for treatment planning of IRE which takes the influence of blood vessels on the electric field into account; this is illustrated on a treatment of 48-year-old patient with a metastasis near the remaining hepatic vein after a right side hemi-hepatectomy. Results. Output of the numerical treatment planning method shows that a 19.9 cm3 irreversible electroporation lesion was generated and the whole tumor was covered with at least 900 V/cm. This compares well with the volume of the hypodense lesion seen in contrast enhanced CT images taken after the IRE treatment. A significant temperature raise occurs near the electrodes. However, the hepatic vein remains open after the treatment without evidence of tumor recurrence after 6 months. Conclusions. Treatment planning using accurate computer models was recognized as important for electrochemotherapy and irreversible electroporation. An important finding of this study was, that the surface of the electrodes heat up significantly. Therefore the clinical user should generally avoid placing the electrodes less than 4 mm away from risk structures when following recommendations of the manufacturer.
The Journal of Membrane Biology | 2013
Denis Pavliha; Bor Kos; Marija Marčan; Anze Zupanic; Gregor Sersa; Damijan Miklavčič
Electroporation-based treatment combining high-voltage electric pulses and poorly permanent cytotoxic drugs, i.e., electrochemotherapy (ECT), is currently used for treating superficial tumor nodules by following standard operating procedures. Besides ECT, another electroporation-based treatment, nonthermal irreversible electroporation (N-TIRE), is also efficient at ablating deep-seated tumors. To perform ECT or N-TIRE of deep-seated tumors, following standard operating procedures is not sufficient and patient-specific treatment planning is required for successful treatment. Treatment planning is required because of the use of individual long-needle electrodes and the diverse shape, size and location of deep-seated tumors. Many institutions that already perform ECT of superficial metastases could benefit from treatment-planning software that would enable the preparation of patient-specific treatment plans. To this end, we have developed a Web-based treatment-planning software for planning electroporation-based treatments that does not require prior engineering knowledge from the user (e.g., the clinician). The software includes algorithms for automatic tissue segmentation and, after segmentation, generation of a 3D model of the tissue. The procedure allows the user to define how the electrodes will be inserted. Finally, electric field distribution is computed, the position of electrodes and the voltage to be applied are optimized using the 3D model and a downloadable treatment plan is made available to the user.
Biomedical Engineering Online | 2015
Ales Groselj; Bor Kos; Maja Cemazar; Jure Urbančič; Grega Kragelj; Masa Bosnjak; Biserka Veberič; Primoz Strojan; Damijan Miklavčič; Gregor Sersa
BackgroundElectrochemotherapy provides highly effective local treatment for a variety of tumors. In deep-seated tumors of the head and neck, due to complex anatomy of the region or inability to cover the whole tumor with standard electrodes, the use of long single needle electrodes is mandatory. In such cases, a treatment plan provides the information on the optimal configuration of the electrodes to adequately cover the tumor with electric field, while the accurate placement of the electrodes in the surgical room in patients can remain a problem. Therefore, during electrochemotherapy of two head and neck lymph-node metastases of squamous cell carcinoma origin, a navigation system for placement of electrodes was used.Patient and methodsElectrochemotherapy of two lymph-node metastases of cutaneous squamous cell carcinoma, one in the left parotid gland and the other in the neck just behind the left mandibular angle, was performed using intravenous administration of bleomycin and long single needle electrodes. The tumors were treated according to the prepared treatment plan, and executed with the use of navigation system.ResultsCoupling of treatment plan with the navigation system aided to an accurate placement of the electrodes. The navigation system helped the surgeon to identify the exact location of the tumors, and helped with the positioning of the long needle electrodes during their insertion, according to treatment plan. Five electrodes were inserted for each metastasis, one centrally in the tumor and four in the periphery of the tumor. Five weeks after electrochemotherapy, computed tomography images demonstrated partial response of the first metastasis and complete response of the second one. Six weeks after electrochemotherapy, fine-needle aspiration biopsy specimen obtained from the treated lesions revealed necrosis and inflammatory cells, without any viable tumor cells.ConclusionWe describe a new technological approach for electrochemotherapy of deep-seated head and neck tumors, coupling of the treatment planning with navigation system for accurate placement of the single long needle electrodes into and around the tumors, according to the treatment plan. Evidence of its effectiveness on two lymph-node metastases of cutaneous squamous cell carcinoma origin in neck lymph is provided.
Bioelectromagnetics | 2015
Azadeh Peyman; Bor Kos; Mihajlo Djokić; Blaž Trotovšek; Clara Limbaeck-Stokin; Gregor Sersa; Damijan Miklavčič
Dielectric properties of freshly excised human liver tissues (in vitro) with several pathological conditions including cancer were obtained in frequency range 100 MHz-5 GHz. Differences in dielectric behavior of normal and pathological tissues at microwave frequencies are discussed based on histological information for each tissue. Data presented are useful for many medical applications, in particular nanosecond pulsed electroporation techniques. Knowledge of dielectric properties is vital for mathematical calculations of local electric field distribution inside electroporated tissues and can be used to optimize the process of electroporation for treatment planning procedures.