Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Boris C. Bastian is active.

Publication


Featured researches published by Boris C. Bastian.


Journal of Clinical Oncology | 2006

Somatic activation of KIT in distinct subtypes of melanoma

John A. Curtin; Daniel Pinkel; Boris C. Bastian

PURPOSE Melanomas on mucosal membranes, acral skin (soles, palms, and nail bed), and skin with chronic sun-induced damage have infrequent mutations in BRAF and NRAS, genes within the mitogen-activated protein (MAP) kinase pathway commonly mutated in melanomas on intermittently sun-exposed skin. This raises the question of whether other aberrations are occurring in the MAP kinase cascade in the melanoma types with infrequent mutations of BRAF and NRAS. PATIENTS AND METHODS We analyzed array comparative genomic hybridization data from 102 primary melanomas (38 from mucosa, 28 from acral skin, and 18 from skin with and 18 from skin without chronic sun-induced damage) for DNA copy number aberrations specific to melanoma subtypes where mutations in BRAF and NRAS are infrequent. A narrow amplification on 4q12 was found, and candidate genes within it were analyzed. RESULTS Oncogenic mutations in KIT were found in three of seven tumors with amplifications. Examination of all 102 primary melanomas found mutations and/or copy number increases of KIT in 39% of mucosal, 36% of acral, and 28% of melanomas on chronically sun-damaged skin, but not in any (0%) melanomas on skin without chronic sun damage. Seventy-nine percent of tumors with mutations and 53% of tumors with multiple copies of KIT demonstrated increased KIT protein levels. CONCLUSION KIT is an important oncogene in melanoma. Because the majority of the KIT mutations we found in melanoma also occur in imatinib-responsive cancers of other types, imatinib may offer an immediate therapeutic benefit for a significant proportion of the global melanoma burden.


Nature | 2009

Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi.

Catherine D. Van Raamsdonk; Vladimir Bezrookove; Gary G. R. Green; Jürgen Bauer; Lona Gaugler; Joan M. O’Brien; Elizabeth Simpson; Gregory S. Barsh; Boris C. Bastian

BRAF and NRAS are common targets for somatic mutations in benign and malignant neoplasms that arise from melanocytes situated in epithelial structures, and lead to constitutive activation of the mitogen-activated protein (MAP) kinase pathway. However, BRAF and NRAS mutations are absent in a number of other melanocytic neoplasms in which the equivalent oncogenic events are currently unknown. Here we report frequent somatic mutations in the heterotrimeric G protein α-subunit, GNAQ, in blue naevi (83%) and ocular melanoma of the uvea (46%). The mutations occur exclusively in codon 209 in the Ras-like domain and result in constitutive activation, turning GNAQ into a dominant acting oncogene. Our results demonstrate an alternative route to MAP kinase activation in melanocytic neoplasia, providing new opportunities for therapeutic intervention.


The New England Journal of Medicine | 2010

Mutations in GNA11 in Uveal Melanoma

Catherine D. Van Raamsdonk; Klaus G. Griewank; Michelle B. Crosby; Maria C. Garrido; Swapna Vemula; Thomas Wiesner; Anna C. Obenauf; Werner Wackernagel; Gary G. R. Green; Nancy Bouvier; M. Mert Sozen; Gail Baimukanova; Ritu Roy; Adriana Heguy; Igor Dolgalev; Raya Khanin; Michael R. Speicher; Joan M. O'Brien; Boris C. Bastian

BACKGROUND Uveal melanoma is the most common intraocular cancer. There are no effective therapies for metastatic disease. Mutations in GNAQ, the gene encoding an alpha subunit of heterotrimeric G proteins, are found in 40% of uveal melanomas. METHODS We sequenced exon 5 of GNAQ and GNA11, a paralogue of GNAQ, in 713 melanocytic neoplasms of different types (186 uveal melanomas, 139 blue nevi, 106 other nevi, and 282 other melanomas). We sequenced exon 4 of GNAQ and GNA11 in 453 of these samples and in all coding exons of GNAQ and GNA11 in 97 uveal melanomas and 45 blue nevi. RESULTS We found somatic mutations in exon 5 (affecting Q209) and in exon 4 (affecting R183) in both GNA11 and GNAQ, in a mutually exclusive pattern. Mutations affecting Q209 in GNA11 were present in 7% of blue nevi, 32% of primary uveal melanomas, and 57% of uveal melanoma metastases. In contrast, we observed Q209 mutations in GNAQ in 55% of blue nevi, 45% of uveal melanomas, and 22% of uveal melanoma metastases. Mutations affecting R183 in either GNAQ or GNA11 were less prevalent (2% of blue nevi and 6% of uveal melanomas) than the Q209 mutations. Mutations in GNA11 induced spontaneously metastasizing tumors in a mouse model and activated the mitogen-activated protein kinase pathway. CONCLUSIONS Of the uveal melanomas we analyzed, 83% had somatic mutations in GNAQ or GNA11. Constitutive activation of the pathway involving these two genes appears to be a major contributor to the development of uveal melanoma. (Funded by the National Institutes of Health and others.).


JAMA | 2011

KIT as a Therapeutic Target in Metastatic Melanoma

Richard D. Carvajal; Cristina R. Antonescu; Jedd D. Wolchok; Paul B. Chapman; Jerrold B. Teitcher; Katherine S. Panageas; Bartosz Chmielowski; Jose Lutzky; Anna C. Pavlick; Anne Fusco; Lauren M. Cane; Naoko Takebe; Swapna Vemula; Nancy Bouvier; Boris C. Bastian; Gary K. Schwartz

CONTEXT Some melanomas arising from acral, mucosal, and chronically sun-damaged sites harbor activating mutations and amplification of the type III transmembrane receptor tyrosine kinase KIT. We explored the effects of KIT inhibition using imatinib mesylate in this molecular subset of disease. OBJECTIVE To assess clinical effects of imatinib mesylate in patients with melanoma harboring KIT alterations. DESIGN, SETTING, AND PATIENTS A single-group, open-label, phase 2 trial at 1 community and 5 academic oncology centers in the United States of 295 patients with melanoma screened for the presence of KIT mutations and amplification between April 23, 2007, and April 16, 2010. A total of 51 cases with such alterations were identified and 28 of these patients were treated who had advanced unresectable melanoma arising from acral, mucosal, and chronically sun-damaged sites. INTERVENTION Imatinib mesylate, 400 mg orally twice daily. MAIN OUTCOME MEASURES Radiographic response, with secondary end points including time to progression, overall survival, and correlation of molecular alterations and clinical response. RESULTS Two complete responses lasting 94 (ongoing) and 95 weeks, 2 durable partial responses lasting 53 and 89 (ongoing) weeks, and 2 transient partial responses lasting 12 and 18 weeks among the 25 evaluable patients were observed. The overall durable response rate was 16% (95% confidence interval [CI], 2%-30%), with a median time to progression of 12 weeks (interquartile range [IQR], 6-18 weeks; 95% CI, 11-18 weeks), and a median overall survival of 46.3 weeks (IQR, 28 weeks-not achieved; 95% CI, 28 weeks-not achieved). Response rate was better in cases with mutations affecting recurrent hotspots or with a mutant to wild-type allelic ratio of more than 1 (40% vs 0%, P = .05), indicating positive selection for the mutated allele. CONCLUSIONS Among patients with advanced melanoma harboring KIT alterations, treatment with imatinib mesylate results in significant clinical responses in a subset of patients. Responses may be limited to tumors harboring KIT alterations of proven functional relevance. Trial Registration clinicaltrials.gov Identifier: NCT00470470.


Nature Genetics | 2011

Germline mutations in BAP1 predispose to melanocytic tumors

Thomas Wiesner; Anna C. Obenauf; Rajmohan Murali; Isabella Fried; Klaus G. Griewank; Peter Ulz; Christian Windpassinger; Werner Wackernagel; Shea Loy; Ingrid H. Wolf; Agnes Viale; Alex E. Lash; Mono Pirun; Nicholas D. Socci; Arno Rütten; Gabriele Palmedo; David H. Abramson; Kenneth Offit; Arthur Ott; Jürgen C. Becker; Lorenzo Cerroni; Heinz Kutzner; Boris C. Bastian; Michael R. Speicher

Common acquired melanocytic nevi are benign neoplasms that are composed of small, uniform melanocytes and are typically present as flat or slightly elevated pigmented lesions on the skin. We describe two families with a new autosomal dominant syndrome characterized by multiple, skin-colored, elevated melanocytic tumors. In contrast to common acquired nevi, the melanocytic neoplasms in affected family members ranged histopathologically from epithelioid nevi to atypical melanocytic proliferations that showed overlapping features with melanoma. Some affected individuals developed uveal or cutaneous melanomas. Segregating with this phenotype, we found inactivating germline mutations of BAP1, which encodes a ubiquitin carboxy-terminal hydrolase. The majority of melanocytic neoplasms lost the remaining wild-type allele of BAP1 by various somatic alterations. In addition, we found BAP1 mutations in a subset of sporadic melanocytic neoplasms showing histological similarities to the familial tumors. These findings suggest that loss of BAP1 is associated with a clinically and morphologically distinct type of melanocytic neoplasm.


American Journal of Pathology | 2003

Classifying Melanocytic Tumors Based on DNA Copy Number Changes

Boris C. Bastian; Adam B. Olshen; Philip E. LeBoit; Daniel Pinkel

Melanoma and benign melanocytic nevi can overlap significantly in their histopathological presentation and misdiagnoses are common. To determine whether genetic criteria can be of diagnostic help we determined DNA copy number changes in 186 melanocytic tumors (132 melanomas and 54 benign nevi) using comparative genomic hybridization. We found highly significant differences between melanomas and nevi. Whereas 127 (96.2%) of the melanomas had some form of chromosomal aberration, only 7 (13.0%) of the benign nevi cases had aberrations. All seven cases with aberrations were Spitz nevi, in six of which the aberration was an isolated gain involving the entire short arm of chromosome 11. This aberration was not observed in any of the 132 melanomas. We also analyzed the 132 melanomas for genetic differences depending on anatomical site, Clarks histogenetic type, and sun-exposure pattern. We show that melanomas on acral sites have significantly more aberrations involving chromosomes 5p, 11q, 12q, and 15, as well as focused gene amplifications. Melanomas classified as lentigo maligna melanomas or as occurring on severely sun-damaged skin showed markedly more frequent losses of chromosomes 17p and 13q. This study shows a pattern of chromosomal aberration in melanoma that is distinct from melanocytic nevi and should be further evaluated as a diagnostic test for melanocytic lesions that are now ambiguous. In addition, we show marked differences in the genetic make-up of melanomas that depend on anatomical location and sun-exposure pattern indicating that potential therapeutic targets might vary among melanoma types.


American Journal of Pathology | 2000

Mutations and Copy Number Increase of HRAS in Spitz Nevi with Distinctive Histopathological Features

Boris C. Bastian; Philip E. LeBoit; Daniel Pinkel

Spitz nevus is a benign melanocytic neoplasm that can be difficult or impossible to histologically distinguish from melanoma. We have recently described copy number increases of chromosome 11p in a subset of Spitz nevi. To study the molecular and histological features of this group, we studied 102 Spitz nevi for 11p copy number increases using fluorescence in situ hybridization (FISH) on tissue arrays. Copy number increases of at least threefold were found in 12 cases (11.8%) and involved the HRAS gene on chromosome 11p. Sequence analysis of HRAS showed frequent oncogenic mutations in cases with copy number increase (8/12 or 67%), contrasting with rare HRAS mutations in cases with normal HRAS copy numbers (1/21 or 5%, P: < 0.0001). Tumors with 11p copy number increases were larger, predominantly intradermal, had marked desmoplasia, characteristic cytological features, and had an infiltrating growth pattern. Proliferation rates in the majority of these cases were low to absent. HRAS activation by either mutation or copy number increase alone could explain several of the histological features that overlap with those of melanoma. We speculate that HRAS activation in the absence of co-operating additional genetic alterations drives the partially transformed melanocytes of these Spitz nevi into senescence or a stable growth arrest. Although there is no data suggesting that Spitz nevi with HRAS activation are at risk for progression to melanoma, future studies are warranted to assess their biological behavior more accurately.


Annals of Surgery | 2007

The Prevalence and Prognostic Value of BRAF Mutation in Thyroid Cancer

Electron Kebebew; Julie Weng; Juergen Bauer; Gustavo Ranvier; Orlo H. Clark; Quan-Yang Duh; Daniel Shibru; Boris C. Bastian; Ann Griffin

Objective:To examine the prevalence of BRAF mutation among thyroid cancer histologic subtypes and determine the association of BRAF mutation with indicators of poor prognosis for papillary thyroid cancer and patient outcome. Summary Background Data:The appropriate extent of surgical treatment, adjuvant therapy and follow-up monitoring for thyroid cancer remains controversial. Advances in the molecular biology of thyroid cancer have helped to identify candidate markers of disease aggressiveness. A commonly found genetic alternation is a point mutation in the BRAF oncogene (BRAF V600E), which is primarily found in papillary thyroid cancer and is associated with more aggressive disease. Methods:BRAF V600E mutation status was determined in 347 tumor samples from 314 patients with thyroid cancer (245 with conventional papillary thyroid cancer, 73 with follicular thyroid cancer, and 29 with the follicular variant of papillary thyroid cancer). Univariate and multivariate analyses were performed to determine the association of BRAF V600E with clinicopathologic factors and patient outcome. Results:The prevalence of BRAF V600E mutation was higher in conventional papillary thyroid cancer (51.0%) than in follicular variant of papillary thyroid cancer (24.1%) and follicular thyroid cancer (1.4%) (P < 0.0001). In patients with conventional papillary thyroid cancer, BRAF V600E mutation was associated with older age (P = 0.0381), lymph node metastasis (P = 0.0323), distant metastasis (P = 0.045), higher TNM stage (I and II vs. III and IV, P = 0.0389), and recurrent and persistent disease (P = 0.009) with a median follow-up time of 6.0 years. Multivariate analysis showed that BRAF V600E mutation [OR (95% CI) = 4.2 (1.2–14.6)] and lymph node metastasis [OR (95% CI) = 7.75 (2.1–28.5)] were independently associated with recurrent and persistent disease in patients with conventional papillary thyroid cancer. Conclusions:BRAF V600E mutation is primarily present in conventional papillary thyroid cancer. It is associated with an aggressive tumor phenotype and higher risk of recurrent and persistent disease in patients with conventional papillary thyroid cancer. Testing for this mutation may be useful for selecting initial therapy and for follow-up monitoring.


The American Journal of Surgical Pathology | 2009

Fluorescence In Situ Hybridization (FISH) as an Ancillary Diagnostic Tool in the Diagnosis of Melanoma

Pedram Gerami; Susan Jewell; Larry E. Morrison; Beth Blondin; John Schulz; Teresa Ruffalo; Paul Matushek; Mona S. Legator; Kristine Jacobson; Scott R. Dalton; Susan Charzan; Nicholas A. Kolaitis; Joan Guitart; Terakeith Lertsbarapa; Susan L. Boone; Philip E. LeBoit; Boris C. Bastian

Although the clinical and pathologic diagnosis of some melanomas is clear-cut, there are many histopathologic simulators of melanoma that pose problems. Over-diagnosis of melanoma can lead to inappropriate therapy and psychologic burdens, whereas under-diagnosis can lead to inadequate treatment of a deadly cancer. We used existing data on DNA copy number alterations in melanoma to assemble panels of fluorescence in situ hybridization (FISH) probes suitable for the analysis of paraffin-embedded tissue. Using FISH data from a training set of 301 tumors, we established a discriminatory algorithm and validated it on an independent set of 169 unequivocal nevi and melanomas as well as 27 cases with ambiguous pathology, for which we had long-term follow-up data. An algorithm-using signal counts from a combination of 4 probes targeting chromosome 6p25, 6 centromere, 6q23, and 11q13 provided the highest diagnostic discrimination. This algorithm correctly classified melanoma with 86.7% sensitivity and 95.4% specificity in the validation cohort. The test also correctly identified as melanoma all 6 of 6 cases with ambiguous pathology that later metastasized. There was a significant difference in the metastasis free survival between test-positive and negative cases with ambiguous pathology (P=0.003). Sufficient chromosomal alterations are present in melanoma that a limited panel of FISH probes can distinguish most melanomas from most nevi, providing useful diagnostic information in cases that cannot be classified reliably by current methods. As a diagnostic aid to traditional histologic evaluation, this assay can have significant clinical impact and improve classification of melanocytic neoplasms with conflicting morphologic criteria.


PLOS Medicine | 2008

Improving Melanoma Classification by Integrating Genetic and Morphologic Features

Amaya Viros; Jane Fridlyand; Juergen Bauer; Konstantin Lasithiotakis; Claus Garbe; Daniel Pinkel; Boris C. Bastian

Background In melanoma, morphology-based classification systems have not been able to provide relevant information for selecting treatments for patients whose tumors have metastasized. The recent identification of causative genetic alterations has revealed mutations in signaling pathways that offer targets for therapy. Identifying morphologic surrogates that can identify patients whose tumors express such alterations (or functionally equivalent alterations) would be clinically useful for therapy stratification and for retrospective analysis of clinical trial data. Methodology/Principal Findings We defined and assessed a panel of histomorphologic measures and correlated them with the mutation status of the oncogenes BRAF and NRAS in a cohort of 302 archival tissues of primary cutaneous melanomas from an academic comprehensive cancer center. Melanomas with BRAF mutations showed distinct morphological features such as increased upward migration and nest formation of intraepidermal melanocytes, thickening of the involved epidermis, and sharper demarcation to the surrounding skin; and they had larger, rounder, and more pigmented tumor cells (all p-values below 0.0001). By contrast, melanomas with NRAS mutations could not be distinguished based on these morphological features. Using simple combinations of features, BRAF mutation status could be predicted with up to 90.8% accuracy in the entire cohort as well as within the categories of the current World Health Organization (WHO) classification. Among the variables routinely recorded in cancer registries, we identified age < 55 y as the single most predictive factor of BRAF mutation in our cohort. Using age < 55 y as a surrogate for BRAF mutation in an independent cohort of 4,785 patients of the Southern German Tumor Registry, we found a significant survival benefit (p < 0.0001) for patients who, based on their age, were predicted to have BRAF mutant melanomas in 69% of the cases. This group also showed a different pattern of metastasis, more frequently involving regional lymph nodes, compared to the patients predicted to have no BRAF mutation and who more frequently displayed satellite, in-transit metastasis, and visceral metastasis (p < 0.0001). Conclusions Refined morphological classification of primary melanomas can be used to improve existing melanoma classifications by forming subgroups that are genetically more homogeneous and likely to differ in important clinical variables such as outcome and pattern of metastasis. We expect this information to improve classification and facilitate stratification for therapy as well as retrospective analysis of existing trial data.

Collaboration


Dive into the Boris C. Bastian's collaboration.

Top Co-Authors

Avatar

Daniel Pinkel

University of California

View shared research outputs
Top Co-Authors

Avatar

Iwei Yeh

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Talevich

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Swapna Vemula

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge