Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Boris Chayer is active.

Publication


Featured researches published by Boris Chayer.


Circulation | 2006

Projected Valve Area at Normal Flow Rate Improves the Assessment of Stenosis Severity in Patients With Low-Flow, Low-Gradient Aortic Stenosis The Multicenter TOPAS (Truly or Pseudo-Severe Aortic Stenosis) Study

Claudia Blais; Ian G. Burwash; Gerald Mundigler; Jean G. Dumesnil; Nicole Loho; Florian Rader; Helmut Baumgartner; Rob S. Beanlands; Boris Chayer; Lyes Kadem; Damien Garcia; Louis-Gilles Durand; Philippe Pibarot

Background— We sought to investigate the use of a new parameter, the projected effective orifice area (EOAproj) at normal transvalvular flow rate (250 mL/s), to better differentiate between truly severe (TS) and pseudo-severe (PS) aortic stenosis (AS) during dobutamine stress echocardiography (DSE). Changes in various parameters of stenosis severity have been used to differentiate between TS and PS AS during DSE. However, the magnitude of these changes lacks standardization because they are dependent on the variable magnitude of the transvalvular flow change occurring during DSE. Methods and Results— The use of EOAproj to differentiate TS from PS AS was investigated in an in vitro model and in 23 patients with low-flow AS (indexed EOA <0.6 cm2/m2, left ventricular ejection fraction ≤40%) undergoing DSE and subsequent aortic valve replacement. For an individual valve, EOA was plotted against transvalvular flow (Q) at each dobutamine stage, and valve compliance (VC) was derived as the slope of the regression line fitted to the EOA versus Q plot; EOAproj was calculated as EOAproj=EOArest+VC×(250−Qrest), where EOArest and Qrest are the EOA and Q at rest. Classification between TS and PS was based on either response to flow increase (in vitro) or visual inspection at surgery (in vivo). EOAproj was the most accurate parameter in differentiating between TS and PS both in vitro and in vivo. In vivo, 15 of 23 patients (65%) had TS and 8 of 23 (35%) had PS. The percentage of correct classification was 83% for EOAproj and 91% for indexed EOAproj compared with percentages of 61% to 74% for the other echocardiographic parameters usually used for this purpose. Conclusions— EOAproj provides a standardized evaluation of AS severity with DSE and improves the diagnostic accuracy for distinguishing TS and PS AS in patients with low-flow, low-gradient AS.


Medical Image Analysis | 2008

Performance evaluation of a medical robotic 3D-ultrasound imaging system

Marie-Ange Janvier; Louis-Gilles Durand; Marie-Hélène Roy Cardinal; Isabelle Renaud; Boris Chayer; Pascal Bigras; Jacques A. de Guise; Gilles Soulez; Guy Cloutier

3D-ultrasound (US) imaging systems offer many advantages such as convenience, low operative costs and multiple scanning options. Most 3D-US freehand tracking systems are not optimally adapted for the quantification of lower limb arterial stenoses because their performance depends on the scanning length, on ferro-magnetic interferences or because they require a constant line of sight with the US probe. Robotic systems represent a promising alternative since they can control and standardize the 3D-US acquisition process for large scanning distances without requiring a specific line of sight. The performance of a new prototype medical robot, in terms of positioning and inter-target accuracies (i.e., difference between measurements and ground truth values) was evaluated with a lower-limb mimicking phantom throughout the robot workspace. The teach/replay repeatability (i.e., difference between taught and replayed points) was also assessed. A mean positioning accuracy between 0.46 mm and 0.75 mm was found on all scanning zones. The mean inter-target distance accuracy varied between 0.26 mm and 0.61 mm. Teach/replay repeatability below 0.20mm was also obtained. Additionally, a 3D reconstruction of in-vitro stenoses was performed with the robotic US scanner. The quantification error of a 80% area reduction (AR) stenosis was 3.0%, whereas it was -0.9% for a less severe 75% AR stenosis. Altogether, these results suggest that the robot may be of value for the clinical evaluation of lower limb vessels over long and tortuous segments starting from the iliac artery down to the popliteal artery below the knee.


IEEE Transactions on Medical Imaging | 2015

Noninvasive Vascular Elastography With Plane Strain Incompressibility Assumption Using Ultrafast Coherent Compound Plane Wave Imaging

Jonathan Porée; Damien Garcia; Boris Chayer; Jacques Ohayon; Guy Cloutier

Plane strain tensor estimation using non-invasive vascular ultrasound elastography (NIVE) can be difficult to achieve using conventional focus beamforming due to limited lateral resolution and frame rate. Recent developments in compound plane wave (CPW) imaging have led to high speed and high resolution imaging. In this study, we present the performance of NIVE using coherent CPW. We show the impact of CPW beamforming on strain estimates compared to conventional focus sequences. To overcome the inherent variability of lateral strains, associated with the low lateral resolution of linear array transducers, we use the plane strain incompressibility to constrain the estimator. Taking advantage of the approximate tenfold increase in frame rate of CPW compared with conventional focus imaging, we introduce a time-ensemble estimation approach to further improve the elastogram quality. By combining CPW imaging with the constrained Lagrangian speckle model estimator, we observe an increase in elastography quality (~10 dB both in signal-to-noise and contrast-to-noise ratios) over a wide range of applied strains (0.02 to 3.2%).


IEEE Transactions on Biomedical Circuits and Systems | 2014

Development of a Photoacoustic, Ultrasound and Fluorescence Imaging Catheter for the Study of Atherosclerotic Plaque

Maxime Abran; Guy Cloutier; Marie-Hélène Roy Cardinal; Boris Chayer; Jean-Claude Tardif; Frédéric Lesage

Atherosclerotic cardiovascular diseases are a major cause of death in industrialized countries. Molecular imaging modalities are increasingly recognized to be a promising avenue towards improved diagnosis and for the evaluation of new drug therapies. In this work, we present an acquisition system and associated catheter enabling simultaneous photoacoustic, ultrasound and fluorescence imaging of arteries designed for in vivo imaging. The catheter performance is evaluated in tissue-mimicking phantoms. Simultaneous imaging with three modalities is demonstrated at frame rates of 30 images per second for ultrasound and fluorescence and 1 image per 13 seconds for photoacoustic. Acquired radio-frequency ultrasound data could be processed to obtain radial strain elastograms. With motorized pullback, 3D imaging of phantoms was performed using the three modalities.


IEEE Transactions on Medical Imaging | 2016

Staggered Multiple-PRF Ultrafast Color Doppler

Daniel Posada; Jonathan Porée; Arnaud Pellissier; Boris Chayer; Francois Tournoux; Guy Cloutier; Damien Garcia

Color Doppler imaging is an established pulsed ultrasound technique to visualize blood flow non-invasively. High-frame-rate (ultrafast) color Doppler, by emissions of plane or circular wavefronts, allows severalfold increase in frame rates. Conventional and ultrafast color Doppler are both limited by the range-velocity dilemma, which may result in velocity folding (aliasing) for large depths and/or large velocities. We investigated multiple pulse-repetition-frequency (PRF) emissions arranged in a series of staggered intervals to remove aliasing in ultrafast color Doppler. Staggered PRF is an emission process where time delays between successive pulse transmissions change in an alternating way. We tested staggered dual- and triple-PRF ultrafast color Doppler, 1) in vitro in a spinning disc and a free jet flow, and 2) in vivo in a human left ventricle. The in vitro results showed that the Nyquist velocity could be extended to up to 6 times the conventional limit. We found coefficients of determination r2 ≥ 0.98 between the de-aliased and ground-truth velocities. Consistent de-aliased Doppler images were also obtained in the human left heart. Our results demonstrate that staggered multiple-PRF ultrafast color Doppler is efficient for high-velocity high-frame-rate blood flow imaging. This is particularly relevant for new developments in ultrasound imaging relying on accurate velocity measurements.


Critical Care Medicine | 2013

Ultrasound monitoring of RBC aggregation as a real-time marker of the inflammatory response in a cardiopulmonary bypass swine model.

Julien Tripette; André Y. Denault; Louise Allard; Boris Chayer; Louis P. Perrault; Guy Cloutier

Objectives:In many pathological conditions, including high-risk surgery, the severity of the inflammatory response is related to the patient outcome. However, determining the patient inflammatory state presents difficulties, as markers are obtained intermittently through blood testing with long delay. RBC aggregation is a surrogate marker of inflammation that can be quantified with the ultrasound Structure Factor Size and Attenuation Estimator. The latter is proposed as a real-time inflammation monitoring technique for patient care. Design:Ten swine underwent a 90-minute cardiopulmonary bypass, and surveillance was maintained during 120 minutes in the postbypass period. To promote the inflammatory reaction, lipopolysaccharide was administrated two times prior to surgery in six of those swine (lipopolysaccharide group). During the whole procedure, the Structure Factor Size and Attenuation Estimator cellular imaging method displayed a RBC aggregation index (W) computed from images acquired within the pump circuit and the femoral vein. Interleukin-6, interleukin-10, C-reactive protein, haptoglobin, immunoglobulin G, and fibrinogen concentrations were measured at specific periods. Main Results:Compared with controls, the lipopolysaccharide group exhibited higher W within the pump circuit (p < 0.05). In the femoral vein, W was gradually amplified in the lipopolysaccharide group during cardiopulmonary bypass and the postbypass period (p < 0.05), whereas interleukin levels were higher in the lipopolysaccharide group but only at the end of cardiopulmonary bypass and beginning of postbypass (p < 0.05). Conclusions:Continuous RBC aggregation monitoring can characterize the evolving inflammatory response during and after cardiopulmonary bypass. The Structure Factor Size and Attenuation Estimator is proposed as a real-time noninvasive monitoring technique to anticipate inflammation-related complications during high-risk surgery or critical care situations. Because RBC aggregation promotes vascular resistance and thrombosis, W could also provide early information on vascular disorders in those clinical situations.


Medical Physics | 2009

Multimodality vascular imaging phantoms: A new material for the fabrication of realistic 3D vessel geometries

Louise Allard; Gilles Soulez; Boris Chayer; François Treyve; Zhao Qin; Guy Cloutier

Multimodality vascular flow phantoms provide a way of testing the geometric accuracy of clinical scanners and optimizing acquisition protocols with easy reproducibility of experimental conditions. This article presents a stereolithography method combined with a lost-material casting technique that eliminates metal residues of cerrolow (a low temperature melting point metallic alloy) left within irregular vessel lumens after casting. These residues potentially cause image artifacts especially in magnetic resonance angiography or flow disturbance. Geometrical accuracies of constructed lumens with isomalt, the proposed material, ranged from 3.3% to 5.7% for vessel diameters of 1.8-7.9 mm, which are comparable to those of lumens constructed with cerrolow that had better accuracies varying from 1.1% to 4.1% (p<0.02). Examples of geometries mimicking diseased arteries such as an aorta with stenosed renal arteries and an iliac artery with multiple stenoses are presented. This sugar-based isomalt material, combined with phantom designs having fiducial markers visible in digital subtraction angiography, computed tomography angiography, magnetic resonance angiography, and ultrasound [Med. Phys. 31, 1424-1433 (2004)], makes easier the fabrication of complex realistic and accurate replicas of pathological vessels with lumen irregularities.


Radiology | 2015

The Added Value of Statistical Modeling of Backscatter Properties in the Management of Breast Lesions at US.

Isabelle Trop; François Destrempes; Mona El Khoury; André Robidoux; Louis Gaboury; Louise Allard; Boris Chayer; Guy Cloutier

PURPOSE To develop a classification method based on the statistical backscatter properties of tissues that can be used as an ancillary tool to the usual Breast Imaging Reporting and Data System (BI-RADS) classification for solid breast lesions identified at ultrasonography (US). MATERIALS AND METHODS This study received institutional review board approval, and all subjects provided informed consent. Eighty-nine women (mean age, 50 years; age range, 22-82 years) with 96 indeterminate solid breast lesions (BI-RADS category 4-5; mean size, 13.2 mm; range, 2.6-44.7 mm) were enrolled. Prior to biopsy, additional radiofrequency US images were obtained, and a 3-second cine sequence was used. The research data were analyzed at a later time and were not used to modify patient management decisions. The lesions were segmented manually, and parameters of the homodyned K distribution (α, k, and μn values) were extracted for three regions: the intratumoral zone, a 3-mm supratumoral zone, and a 5-mm infratumoral zone. The Mann-Whitney rank sum test was used to identify parameters with the best discriminating value, yielding intratumoral α, supratumoral k, and infratumoral μn values. RESULTS The 96 lesions were classified as follows: 48 BI-RADS category 4A lesions, 16 BI-RADS category 4B lesions, seven BI-RADS category 4C lesions, and 25 BI-RADS category 5 lesions. There were 24 cancers (25%). The area under the receiver operating characteristic curve was 0.76 (95% confidence interval: 0.65, 0.86). Overall, 24% of biopsies (in 17 of 72 lesions) could have been spared. By limiting analysis to lesions with a lower likelihood of malignancy (BI-RADS category 4A-4B), this percentage increased to 26% (16 of 62 lesions). Among benign lesions, the model was used to correctly classify 10 of 38 fibroadenomas (26%) and three of seven stromal fibroses (43%). CONCLUSION The statistical model performs well in the classification of solid breast lesions at US, with the potential of preventing one in four biopsies without missing any malignancy.


Medical Physics | 2013

A multimodality vascular imaging phantom of an abdominal aortic aneurysm with a visible thrombus

Louise Allard; Gilles Soulez; Boris Chayer; Zhao Qin; David Roy; Guy Cloutier

PURPOSE With the continuous development of new stent grafts and implantation techniques, it has now become technically feasible to treat abdominal aortic aneurysms (AAA) with challenging anatomy using endovascular repair with standard, fenestrated, or branched stent-grafts.In vitro experimentations are very useful to improve stent-graft design and conformability or imaging guidance for stent-graft delivery or follow-up. Vascular replicas also help to better understand the limitation of endovascular approaches in challenging anatomy and possibly improve surgical planning or training by practicing high risk clinical procedures in the laboratory to improve outcomes in the operating room. Most AAA phantoms available have a very basic anatomy, which is not representative of the clinical reality. This paper presents a method of fabrication of a realistic AAA phantom with a visible thrombus, as well as some mechanical properties characterizing such phantom. METHODS A realistic AAA geometry replica of a real patient anatomy taken from a multidetector computed tomography (CT) scan was manufactured. To demonstrate the multimodality imaging capability of this new phantom with a thrombus visible in magnetic resonance (MR) angiography, CT angiography (CTA), digital subtraction angiography (DSA), and ultrasound, image acquisitions with all these modalities were performed by using standard clinical protocols. Potential use of this phantom for stent deployment was also tested. A rheometer allowed defining hyperelastic and viscoelastic properties of phantom materials. RESULTS MR imaging measurements of SNR and CNR values on T1 and T2-weighted sequences and MR angiography indicated reasonable agreement with published values of AAA thrombus and abdominal componentsin vivo. X-ray absorption also lay within normal ranges of AAA patients and was representative of findings observed on CTA, fluoroscopy, and DSA. Ultrasound propagation speeds for developed materials were also in concordance with the literature for vascular and abdominal tissues. CONCLUSIONS The mimicked abdominal tissues, AAA wall, and surrounding thrombus were developed to match imaging features ofin vivo MR, CT, and ultrasound examinations. This phantom should be of value for image calibration, segmentation, and testing of endovascular devices for AAA endovascular repair.PURPOSE With the continuous development of new stent grafts and implantation techniques, it has now become technically feasible to treat abdominal aortic aneurysms (AAA) with challenging anatomy using endovascular repair with standard, fenestrated, or branched stent-grafts. In vitro experimentations are very useful to improve stent-graft design and conformability or imaging guidance for stent-graft delivery or follow-up. Vascular replicas also help to better understand the limitation of endovascular approaches in challenging anatomy and possibly improve surgical planning or training by practicing high risk clinical procedures in the laboratory to improve outcomes in the operating room. Most AAA phantoms available have a very basic anatomy, which is not representative of the clinical reality. This paper presents a method of fabrication of a realistic AAA phantom with a visible thrombus, as well as some mechanical properties characterizing such phantom. METHODS A realistic AAA geometry replica of a real patient anatomy taken from a multidetector computed tomography (CT) scan was manufactured. To demonstrate the multimodality imaging capability of this new phantom with a thrombus visible in magnetic resonance (MR) angiography, CT angiography (CTA), digital subtraction angiography (DSA), and ultrasound, image acquisitions with all these modalities were performed by using standard clinical protocols. Potential use of this phantom for stent deployment was also tested. A rheometer allowed defining hyperelastic and viscoelastic properties of phantom materials. RESULTS MR imaging measurements of SNR and CNR values on T1 and T2-weighted sequences and MR angiography indicated reasonable agreement with published values of AAA thrombus and abdominal components in vivo. X-ray absorption also lay within normal ranges of AAA patients and was representative of findings observed on CTA, fluoroscopy, and DSA. Ultrasound propagation speeds for developed materials were also in concordance with the literature for vascular and abdominal tissues. CONCLUSIONS The mimicked abdominal tissues, AAA wall, and surrounding thrombus were developed to match imaging features of in vivo MR, CT, and ultrasound examinations. This phantom should be of value for image calibration, segmentation, and testing of endovascular devices for AAA endovascular repair.


international symposium on biomedical imaging | 2008

Synthetic images of blood microcirculation to assess precision of velocity profiles by a cross-correlation method

Marianne Fenech; Boris Chayer; Guy Cloutier

Optical cross-correlation methods have been used to study the motion of red blood cells (RBC) in the microcirculation. To evaluate the precision of such a method to determine RBC velocity profiles, we developped a computational model of the microscopy image formation. The following steps were undertaken: (1) a mechanical model was used to mimic three dimensional RBC movements in a tubular parabolic flow; (2) at each time step, a synthetic image was built using microscopic image formation equations based on the depth of correlation of RBCs; and (3) the velocity profile was extracted by a cross-correlation algorithm applied to these synthetic images. The estimated maximum velocities extracted from the simulated images were always smaller than velocities found by simulation. Relative errors (4% to 25%) depended on the vessel radius and on the shape of the velocity profile, but not on the hematocrit or on the maximum velocity.

Collaboration


Dive into the Boris Chayer's collaboration.

Top Co-Authors

Avatar

Guy Cloutier

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Damien Garcia

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gilles Soulez

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Louise Allard

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amir Hodzic

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Daniel Posada

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Diya Wang

Université de Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge