Boris Hedtke
Humboldt University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Boris Hedtke.
EMBO Reports | 2000
Boris Hedtke; Thomas Börner; Andreas Weihe
The land plant Arabidopsis thaliana contains three closely related nuclear genes encoding phage‐type RNA polymerases (RpoT;1, RpoT;2 and RpoT;3). The gene products of RpoT;1 and RpoT;3 have previously been shown to be imported into mitochondria and chloroplasts, respectively. Here we show that the transit peptide of RpoT;2 possesses dual targeting properties. Transient expression assays in tobacco protoplasts as well as stable transformation of Arabidopsis plants demonstrate efficient targeting of fusion peptides consisting of the N‐terminus of RpoT;2 joined to green fluorescent protein to both organelles. Thus, RpoT;2 might be the first RNA polymerase shown to transcribe genes in two different genomes. RNA polymerase activity of recombinant RpoT;2 is uneffected by the inhibitor tagetin, qualifying the gene product of RpoT;2 as a phage‐type polymerase.
Gene | 2002
Uwe Richter; Justine Kiessling; Boris Hedtke; Eva L. Decker; Ralf Reski; Thomas Börner; Andreas Weihe
Angiosperms possess a small family of phage-type RNA polymerase genes that arose by gene duplication from an ancestral gene encoding the mitochondrial RNA polymerase. We have isolated and sequenced the genes and cDNAs encoding two phage-type RNA polymerases, PpRpoT1 and PpRpoT2, from the moss Physcomitrella patens. PpRpoT1 comprises 19 exons and 18 introns, PpRpoT2 contains two additional introns. The N-terminal transit peptides of both polymerases are shown to confer dual-targeting of green fluorescent protein fusions to mitochondria and plastids. In vitro translation of the cDNAs revealed initiation of translation at two in-frame AUG start codons. Translation from the first methionine gives rise to a plastid-targeted polymerase, whereas initiation from the second methionine results in exclusively mitochondrial-targeted protein. Thus, dual-targeting of Physcomitrella RpoT is caused by and might be regulated by multiple translational starts. In phylogenetic analyses, the Physcomitrella RpoT polymerases form a sister group to all other phage-type polymerases of land plants. The two genes result from a gene duplication event that occurred independently from the one which led to the organellar polymerases with mitochondrial or plastid targeting properties in angiosperms. Yet, according to their conserved exon-intron structures they are representatives of the molecular evolutionary line leading to the RpoT genes of higher land plants.
Plant Physiology | 2011
Anna Lytovchenko; Ira Eickmeier; Clara Pons; Sonia Osorio; Marek Szecowka; Kerstin Lehmberg; Stéphanie Arrivault; Takayuki Tohge; Benito Pineda; María Teresa Antón; Boris Hedtke; Yinghong Lu; Joachim Fisahn; Ralph Bock; Mark Stitt; Bernhard Grimm; Antonio Granell; Alisdair R. Fernie
Fruit of tomato (Solanum lycopersicum), like those from many species, have been characterized to undergo a shift from partially photosynthetic to truly heterotrophic metabolism. While there is plentiful evidence for functional photosynthesis in young tomato fruit, the rates of carbon assimilation rarely exceed those of carbon dioxide release, raising the question of its role in this tissue. Here, we describe the generation and characterization of lines exhibiting a fruit-specific reduction in the expression of glutamate 1-semialdehyde aminotransferase (GSA). Despite the fact that these plants contained less GSA protein and lowered chlorophyll levels and photosynthetic activity, they were characterized by few other differences. Indeed, they displayed almost no differences in fruit size, weight, or ripening capacity and furthermore displayed few alterations in other primary or intermediary metabolites. Although GSA antisense lines were characterized by significant alterations in the expression of genes associated with photosynthesis, as well as with cell wall and amino acid metabolism, these changes were not manifested at the phenotypic level. One striking feature of the antisense plants was their seed phenotype: the transformants displayed a reduced seed set and altered morphology and metabolism at early stages of fruit development, although these differences did not affect the final seed number or fecundity. Taken together, these results suggest that fruit photosynthesis is, at least under ambient conditions, not necessary for fruit energy metabolism or development but is essential for properly timed seed development and therefore may confer an advantage under conditions of stress.
Nucleic Acids Research | 2007
Monika Swiatecka-Hagenbruch; Carola Emanuel; Boris Hedtke; Karsten Liere; Thomas Börner
Although chloroplast genomes are small, the transcriptional machinery is very complex in plastids of higher plants. Plastidial genes of higher plants are transcribed by plastid-encoded (PEP) and nuclear-encoded RNA polymerases (NEP). The nuclear genome of Arabidopsis contains two candidate genes for NEP, RpoTp and RpoTmp, both coding for phage-type RNA polymerases. We have analyzed the use of PEP and NEP promoters in transgenic Arabidopsis lines with altered RpoTp activities and in Arabidopsis RpoTp insertion mutants lacking functional RpoTp. Low or lacking RpoTp activity resulted in an albino phenotype of the seedlings, which normalized later in development. Differences in promoter usage between wild type and plants with altered RpoTp activity were also most obvious early in development. Nearly all NEP promoters were used in plants with low or lacking RpoTp activity, though certain promoters showed reduced or even increased usage. The strong NEP promoter of the essential ycf1 gene, however, was not used in mutant seedlings lacking RpoTp activity. Our data provide evidence for NEP being represented by two phage-type RNA polymerases (RpoTp and RpoTmp) that have overlapping as well as gene-specific functions in the transcription of plastidial genes.
The Plant Cell | 2011
Olaf Czarnecki; Boris Hedtke; Michael Melzer; Maxi Rothbart; Andreas Richter; Yvonne Schröter; Thomas Pfannschmidt; Bernhard Grimm
The identification and characterization of a glutamyl-tRNA reductase binding protein (GluTRBP) results in a new model for spatial separation of 5-aminolevulinic acid (ALA) formation. GluTRBP-bound GluTR is attached to the thylakoid membrane and synthesizes ALA that is likely directed into the heme-synthesizing pathway. 5-Aminolevulinic acid (ALA) is the universal precursor for tetrapyrrole biosynthesis and is synthesized in plants in three enzymatic steps: ligation of glutamate (Glu) to tRNAGlu by glutamyl-tRNA synthetase, reduction of activated Glu to Glu-1-semialdehyde by glutamyl-tRNA reductase (GluTR), and transamination to ALA by Glu 1-semialdehyde aminotransferase. ALA formation controls the metabolic flow into the tetrapyrrole biosynthetic pathway. GluTR is proposed to be the key regulatory enzyme that is tightly controlled at transcriptional and posttranslational levels. We identified a GluTR binding protein (GluTRBP; previously called PROTON GRADIENT REGULATION7) that is localized in chloroplasts and part of a 300-kD protein complex in the thylakoid membrane. Although the protein does not modulate activity of ALA synthesis, the knockout of GluTRBP is lethal in Arabidopsis thaliana, whereas mutants expressing reduced levels of GluTRBP contain less heme. GluTRBP expression correlates with a function in heme biosynthesis. It is postulated that GluTRBP contributes to subcompartmentalized ALA biosynthesis by maintaining a portion of GluTR at the plastid membrane that funnels ALA into the heme biosynthetic pathway. These results regarding GluTRBP support a model of plant ALA synthesis that is organized in two separate ALA pools in the chloroplast to provide appropriate substrate amounts for balanced synthesis of heme and chlorophyll.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Fan Zhang; Weijiang Tang; Boris Hedtke; Linlin Zhong; Lin Liu; Lianwei Peng; Congming Lu; Bernhard Grimm; Rongcheng Lin
Significance Both posttranscriptional RNA editing and tetrapyrrole metabolism are important processes in land plants and animals. A direct link between these two distinct programs had hitherto not been established. This study reveals an unexpected function for protoporphyrinogen IX oxidase 1 from model plant Arabidopsis thaliana in regulating plastid RNA editing through interacting with and modulating the stability of multiple organellar RNA editing factors. In addition to furthering our knowledge of the composition of the plant organellar editing apparatus, this research provides insight into both the conserved and divergent roles of enzymes in the tetrapyrrole metabolism during evolution. RNA editing is a posttranscriptional process that covalently alters the sequence of RNA molecules and plays important biological roles in both animals and land plants. In flowering plants, RNA editing converts specific cytidine residues to uridine in both plastid and mitochondrial transcripts. Previous studies identified pentatricopeptide repeat (PPR) motif-containing proteins as site-specific recognition factors for cytidine targets in RNA sequences. However, the regulatory mechanism underlying RNA editing was largely unknown. Here, we report that protoporphyrinogen IX oxidase 1 (PPO1), an enzyme that catalyzes protoporphyrinogen IX into protoporphyrin IX in the tetrapyrrole biosynthetic pathway, plays an unexpected role in editing multiple sites of plastid RNA transcripts, most of which encode subunits of the NADH dehydrogenase-like complex (NDH), in the reference plant Arabidopsis thaliana. We identified multiple organellar RNA editing factors (MORFs), including MORF2, MORF8, and MORF9, that interact with PPO1. We found that two conserved motifs within the 22-aa region at the N terminus of PPO1 are essential for its interaction with MORFs, its RNA editing function, and subsequently, its effect on NDH activity. However, transgenic plants lacking key domains for the tetrapyrrole biosynthetic activity of PPO1 exhibit normal RNA editing. Furthermore, MORF2 and MORF9 interact with three PPRs or related proteins required for editing of ndhB and ndhD sites. These results reveal that the tetrapyrrole biosynthetic enzyme PPO1 is required for plastid RNA editing, acting as a regulator that promotes the stability of MORF proteins through physical interaction.
Molecular Genetics and Genomics | 2005
O. P. Soldatova; Apchelimov Aa; Natalia Radukina; T. A. Ezhova; S. V. Shestakov; Valeria Ziemann; Boris Hedtke; Bernhard Grimm
Several Arabidopsis mutants of the ecotype Dijon were isolated that show resistance to the herbicide acifluorfen, which inactivates protoporphyrinogen oxidase (PPOX), an enzyme of tetrapyrrole biosynthesis. This enzyme provides protoporphyrin for both Mg chelatase and ferrochelatase at the branchpoint, which leads to chlorophyll and heme, respectively. One of the mutations, aci5-3, displays semidominant inheritance. Heterozygous progeny showed yellow-green leaves, while the homozygous seedlings were white and inviable, but could be rescued by supplementing the medium with sugar. Interestingly, the expression of neither of the two forms of PPOX was altered in the mutant, but the rate of synthesis of 5-aminolevulinate, the precursor of all tetrapyrroles, was drastically reduced. Genetic mapping revealed the mutant locus is closely linked to the ch42 marker, which is itself located in the CHLI-1 gene which codes for one of the three subunits of Mg chelatase. The cs mutant also shows a defect in this gene, and test for allelism with aci5-3 confirmed that the two mutations are allelic. Sequencing of the wild type and aci5-3 alleles of CHLI-1 revealed a single base change (G718A), which results in a D240N substitution in the CHLI-1 protein. In the homozygous aci5-3 mutant no CHLI-1 RNA or protein could be detected. Strikingly, CHLH and CHLI-2 transcripts were also absent. This indicates the existence of a feedback-regulatory mechanism that inactivates the genes encoding certain Mg chelatase subunits. The basis for the semidominant inheritance pattern and the relationship between herbicide resistance and modified gene expression is discussed.
Plant Molecular Biology | 2007
Boris Hedtke; Ali Alawady; Shuai Chen; Frederik Börnke; Bernhard Grimm
Glutamyl-tRNA reductase (GluTR) is encoded by HEMA in higher plants and catalyzes in plastids the initial enzymatic step of tetrapyrrole biosynthesis eventually leading to heme and chlorophyll. GluTR activity is subjected to a complex regulation on multiple expression levels. An ethanol-inducible HEMA-RNA-interference (RNAi) gene construct was introduced into the tobacco genome to study the primary effects of low GluTR content on the tetrapyrrole biosynthetic pathway. During the first days of induced HEMA silencing the chlorophyll and heme contents were diminished in young leaves. HEMA mRNA and GluTR protein content were also strongly reduced. However, expression analyses revealed that none of the other tetrapyrrole biosynthesis genes were affected on the transcriptional level in a nine days period after HEMA inactivation. Previously generated transgenic tobacco lines with RNAi silenced expression of the glutamate 1-semialdehyde aminotransferase (GSA) gene did also not display changes of transcripts from selected genes of tetrapyrrole biosynthesis and photosynthesis. Although the transcript levels were not decreased after inactivation of HEMA and GSA-expression, enzyme activities for Mg chelatase and Fe chelatase were lower, which occurred in parallel to the loss of chlorophyll and heme content. Posttranslational modification of enzymes downstream of ALA-biosynthesis is proposed as a regulatory mechanism to adjust the flux through tetrapyrrole biosynthesis in balance to supply of ALA.
Plant Physiology | 2016
Janina Apitz; Kenji Nishimura; Judith Schmied; Anja Wolf; Boris Hedtke; Klaas J. van Wijk; Bernhard Grimm
The protease post-translationally fine-tunes a key enzyme in the synthesis of 5-Aminolevulinic acid during photoperiodic growth. 5-Aminolevulinic acid (ALA) is the first committed substrate of tetrapyrrole biosynthesis and is formed from glutamyl-tRNA by two enzymatic steps. Glutamyl-tRNA reductase (GluTR) as the first enzyme of ALA synthesis is encoded by HEMA genes and tightly regulated at the transcriptional and posttranslational levels. Here, we show that the caseinolytic protease (Clp) substrate adaptor ClpS1 and the ClpC1 chaperone as well as the GluTR-binding protein (GBP) interact with the N terminus of GluTR. Loss-of function mutants of ClpR2 and ClpC1 proteins show increased GluTR stability, whereas absence of GBP results in decreased GluTR stability. Thus, the Clp protease system and GBP contribute to GluTR accumulation levels, and thereby the rate-limiting ALA synthesis. These findings are supported with Arabidopsis (Arabidopsis thaliana) hema1 mutants expressing a truncated GluTR lacking the 29 N-terminal amino acid residues of the mature protein. Accumulation of this truncated GluTR is higher in dark periods, resulting in increased protochlorophyllide content. It is proposed that the proteolytic activity of Clp protease counteracts GBP binding to assure the appropriate content of GluTR and the adequate ALA synthesis for chlorophyll and heme in higher plants.
Journal of Plant Physiology | 2011
Judith Schmied; Boris Hedtke; Bernhard Grimm
5-Aminolevulinic acid (ALA) synthesis has been shown to be the rate limiting step of tetrapyrrole biosynthesis. Glutamyl-tRNA reductase (GluTR) is the first committed enzyme of plant ALA synthesis and is controlled by interacting regulators, such as heme and the FLU protein. Induced inactivation of the HEMA1 gene encoding GluTR by RNAi expression in tobacco resulted in a reduced activity of Mg chelatase and Fe chelatase indicating a feed-forward regulatory mechanism that links ALA synthesis posttranslationally with late enzymes of tetrapyrrole biosynthesis (Hedtke et al., 2007). Here, the regulatory impact of GluTR was investigated by overexpression of AtHEMA1 in Arabidopsis and tobacco plants. Light-dependent ALA synthesis cannot benefit from an up to 7-fold induced expression of GluTR in Arabidopsis. While constitutive AtHEMA1 overexpression in tobacco stimulates ALA synthesis by 50-90% during light-exposed growth of seedlings, no increase in heme and chlorophyll contents is observed. HEMA1 overexpression in etiolated and dark-grown Arabidopsis and tobacco seedlings leads to additional accumulation of protochlorophyllide. As excessive accumulation of GluTR does not correlate with increased ALA formation, it is hypothesized that ALA synthesis is additionally limited by other effectors that balance the allocation of ALA with the activity of enzymes of chlorophyll and heme biosynthesis.