Boris Le Guennic
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Boris Le Guennic.
Inorganic Chemistry | 2008
Anthony D’Aléo; Alexandre Picot; Andrew Beeby; J. A. Gareth Williams; Boris Le Guennic; Chantal Andraud; Olivier Maury
A series of push-pull donor-pi-conjugated dipicolinic acid ligands and related tris-dipicolinate europium and lutetium complexes have been prepared. The ligands present broad absorption and emission transitions in the visible spectral range unambiguously assigned to charge-transfer transitions (CT) by means of time-dependent density functional theory calculations. The photophysical properties (absorption, emission, luminescence quantum yield, and lifetime) of the corresponding europium complexes were thoroughly investigated. Solvatochromism and temperature effects clearly confirm that Eu(III) sensitization directly occurs from the ligand CT state. In addition, modulation of the energy of the CT donating state by changing the nature of the donor fragment allows the optimal energy of the antennae for europium sensitization to be determined, and this optimal energy was found to be close to the (5)D 1 accepting state. Finally, this CT sensitization process has been successfully extended to near-infrared emitters (neodymium and ytterbium).
Accounts of Chemical Research | 2015
Boris Le Guennic; Denis Jacquemin
Conspectus Cyanine derivatives, named from the Greek word kyanos meaning dark-blue, were discovered more than 150 years ago and remain one of the most widely used classes of organic dyes with contemporary applications in photography (panchromatic emulsions), information storage (CD-R and DVD-R media) and biochemistry (DNA and protein labeling) fields. Cyanine chromogens consist of a charged π-conjugated segment containing an odd number of sp2 carbon atoms with the chain capped at the extremities by two electronegative centers, typically nitrogen or oxygen atoms. Cyanines are characterized by a vanishing bond length alternation indicating nearly equal carbon–carbon bond lengths, as well as a very intense and sharp absorption band presenting a shoulder. This hallmark band undergoes a strong red shift when the chain is extended. This so-called vinyl shift is extremely large (ca. 100 nm for each pair of carbon atoms added in the π-conjugated path), making cyanines ideal building blocks for the design of devices with near-infrared applications. Numerous cyanines also exhibit emission bands with large quantum yields. These exceptional optical properties explain why both canonical cyanines and the corresponding fluoroborates (e.g., boron-dipyrromethene, BODIPY) remain the focus of an ever-growing body of experimental work. In turn, this popularity has stimulated quantum mechanical investigations aiming, on the one hand, at probing the specific electronic nature of cyanine dyes and, on the other hand, at helping to design new dyes. However, the adiabatic approximation to time-dependent density functional theory, the most widespread ab initio model for electronically excited states, fails to accurately reproduce the absorption spectra of cyanine derivatives: it yields a systematic and large underestimation of the experimental wavelengths irrespective of the details of the computational protocol. In contrast, highly correlated wave function approaches provide accurate transition energies for model systems but are hardly applicable to real-life cyanines and BODIPY. This indicates that setting up a computationally tractable theoretical protocol that provides both robust and accurate optical spectra for cyanine-based dyes is a major challenge that has only been taken up lately. In this Account, we compile the most recent advances in the field by considering both compact streptocyanines and large fluoroborates. For the former, we summarize the key results obtained with a large panel of theoretical approaches, allowing us not only to understand the origin of the cyanine challenge but also to pinpoint the schemes presenting the most promising accuracy/effort ratio. For the latter, we show via selected examples how theoretical models can be used to reproduce simultaneously experimental band shapes and transition energies, thus paving the way to an efficient in silico design of new compounds.
Angewandte Chemie | 2015
Fabrice Pointillart; Kevin Bernot; Stéphane Golhen; Boris Le Guennic; Thierry Guizouarn; Lahcène Ouahab; Olivier Cador
The influence of nuclear spin on the magnetic hysteresis of a single-molecule is evidenced. Isotopically enriched Dy(III) complexes are synthesized and an isotopic dependence of their magnetic relaxation is observed. This approach is coupled with tuning of the molecular environment through dilution in an amorphous or an isomorphous diamagnetic matrix. The combination of these approaches leads to a dramatic enhancement of the magnetic memory of the molecule. This general recipe can be efficient for rational optimization of single-molecule magnets (SMMs), and provides an important step for their integration into molecule-based devices.
Journal of the American Chemical Society | 2008
Mark A. Fox; Rachel L. Roberts; Thomas E. Baines; Boris Le Guennic; Jean-François Halet; František Hartl; Dmitri S. Yufit; David Albesa-Jové; Judith A. K. Howard; Paul J. Low
The complexes [Ru(1-C[triple bond]C-1,10-C2B8H9)(dppe)Cp*] (3a), [Ru(1-C[triple bond]C-1,12-C2B10H11)(dppe)Cp*] (3b), [{Ru(dppe)Cp*}2{mu-1,10-(C[triple bond]C)2-1,10-C2B8H8}] (4a) and [{Ru(dppe)Cp*}2{mu-1,12-(C[triple bond]C)2-1,12-C2B10H10}] (4b), which form a representative series of mono- and bimetallic acetylide complexes featuring 10- and 12-vertex carboranes embedded within the diethynyl bridging ligand, have been prepared and structurally characterized. In addition, these compounds have been examined spectroscopically (UV-vis-NIR, IR) in all accessible redox states. The significant separation of the two, one-electron anodic waves observed in the cyclic voltammograms of the bimetallic complexes 4a and 4b is largely independent of the nature of the electrolyte and is attributed to stabilization of the intermediate redox products [4a]+ and [4b]+ through interactions between the metal centers across a distance of ca. 12.5 A. The mono-oxidized bimetallic complexes [4a]+ and [4b]+ exhibit spectroscopic properties consistent with a description of these species in terms of valence-localized (class II) mixed-valence compounds, including a unique low-energy electronic absorption band, attributed to an IVCT-type transition that tails into the IR region. DFT calculations with model systems [4a-H]+ and [4b-H]+ featuring simplified ligand sets reproduce the observed spectroscopic data and localized electronic structures for the mixed-valence cations [4a]+ and [4b]+.
Chemical Science | 2013
Siwar Chibani; Boris Le Guennic; Azzam Charaf-Eddin; Adèle D. Laurent; Denis Jacquemin
BODIPY dyes constitute one of the most efficient class of fluorescent molecules, yet their absorption and emission signatures are hardly predictable with theoretical tools. Here, we use a robust Time-Dependent Density Functional Theory approach that simultaneously accounts for solvent and vibrational effects, in order to simulate the optical properties of a large panel of BODIPY derivatives. In particular, this contribution is focussed on the accurate determination of both the 0–0 energies and vibronic shapes, that allow meaningful comparisons between experimental measurements and theoretical simulations. It turns out that Truhlars M06-2X functional is well suited for modelling the variations of the 0–0 energies induced by side groups, modifications of the skeleton, stiffening or extension of the π-path. Indeed, while the absolute mean deviation remains quite sizeable, the determination coefficient between experimental and theoretical energies is exceptionally large (R2 = 0.98), highlighting the robustness of the proposed approach. In addition, for most BODIPYs, theory is able to accurately reproduce vibrationally resolved bands. The developed protocol was successfully applied to provide insights for both pH and ion sensors. It also allowed the understanding of the optical behaviours of a series of BODIPY dimers and NIR dyes. This constitutes an unprecedented investigation of several BODIPY dyes both in terms of the number of treated molecules (more than sixty) and of the reliability of the predictions.
Journal of the American Chemical Society | 2013
Tamyris T. da Cunha; Julie Jung; Marie Emmanuelle Boulon; Giulio Campo; Fabrice Pointillart; Cynthia L. M. Pereira; Boris Le Guennic; Olivier Cador; Kevin Bernot; Francesco Pineider; Stéphane Golhen; Lahcène Ouahab
The [Dy(tta)3(L)] complex behaves as a single ion magnet both in its crystalline phase and in solution. Experimental and theoretical magnetic anisotropy axes perfectly match and lie along the most electro-negative atoms of the coordination sphere. Both VSM and MCD measurements highlight the robustness of the complex, with persistence of the memory effect even in solution up to 4 K.
Inorganic Chemistry | 2008
Stephan Schenk; Boris Le Guennic; Barbara Kirchner; Markus Reiher
In this work, we investigate with density functional methods mechanistic details of catalytic dinitrogen reduction mediated by Schrocks molybdenum complex under ambient conditions. We explicitly take into account the full HIPTN 3N ligand without approximating it by model systems. Our data show that replacement of the bulky HIPT substituent by smaller groups leads to deviations in energy of up to 100 kJ mol (-1). Alternatives to the Chatt-like mechanism are also investigated. It turns out that for the generation of the first molecule of ammonia, protonation of the ligand plays a crucial role. With an increasing number of hydrogens on the terminal nitrogen atom, the reduction becomes more difficult. The energetically most feasible step is the generation of the first molecule of ammonia, while the preceding transfer of the second electron and proton is the most difficult one. Reaction energies are not only reported for decamethyl chromocene as in previous studies but also for a series of other metallocenes. Furthermore, results are provided in a way to allow for a convenient estimation of the thermochemical boundary conditions of catalysis with an arbitrary combination of acid and reductant. We demonstrate that the [Mo](NNH 3) (+) complex easily loses ammonia even in the absence of a reductant. For some complexes, spin states with higher multiplicity are the ground state instead of those with lower spin multiplicity.
Journal of the American Chemical Society | 2010
Pierre-Antoine Bouit; Christophe Aronica; Loı̈c Toupet; Boris Le Guennic; Chantal Andraud; Olivier Maury
The association of heptamethine cyanine cation 1(+) with various counterions A (A = Br(-), I(-), PF(6)(-), SbF(6)(-), B(C(6)F(5))(4)(-), TRISPHAT) was realized. The six different ion pairs have been characterized by X-ray diffraction, and their absorption properties were studied in polar (DCM) and apolar (toluene) solvents. A small, hard anion (Br(-)) is able to strongly polarize the polymethine chain, resulting in the stabilization of an asymmetric dipolar-like structure in the crystal and in nondissociating solvents. On the contrary, in more polar solvents or when it is associated with a bulky soft anion (TRISPHAT or B(C(6)F(5))(4)(-)), the same cyanine dye adopts preferentially the ideal polymethine state. The solid-state and solution absorption properties of heptamethine dyes are therefore strongly correlated to the nature of the counterion.
Journal of Chemical Theory and Computation | 2012
Siwar Chibani; Boris Le Guennic; Azzam Charaf-Eddin; Olivier Maury; Chantal Andraud; Denis Jacquemin
We have simulated the optical properties of Aza-Boron-dipyrromethene (Aza-BODIPY) dyes and, more precisely, the 0-0 energies as well as the shape of both absorption and fluorescence bands, thanks to the computation of vibronic couplings. To this end, time-dependent density functional theory (TD-DFT) calculations have been carried out with a systematic account of both vibrational and solvent effects. In a first step, we assessed different atomic basis sets, a panel of global and range-separated hybrid functionals as well as different solvent models (linear-response, corrected linear-response, and state-specific). In this way, we have defined an accurate yet efficient protocol for these dyes. In a second stage, several simulations have been carried out to investigate acidochromic and complexation effects, as well as the impact of side groups on the topology of the optical bands. In each case, theory is able to accurately reproduce experimental results and the proposed protocol is consequently useful to design new dyes featuring improved properties.
Organic Letters | 2011
Quentin Bellier; Sarah Pégaz; Christophe Aronica; Boris Le Guennic; Chantal Andraud; Olivier Maury
The synthesis, spectroscopic properties, and TD-DFT calculations of new aza-Boron-dipyromethene dyes featuring pendant nitrofluorenylethynyl substituents are described. This functionalization allows for moving the luminescence in the NIR, conserving a good quantum yield efficiency.