Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Boris Lenhard is active.

Publication


Featured researches published by Boris Lenhard.


Nature | 2012

The accessible chromatin landscape of the human genome.

Robert E. Thurman; Eric Rynes; Richard Humbert; Jeff Vierstra; Matthew T. Maurano; Eric Haugen; Nathan C. Sheffield; Andrew B. Stergachis; Hao Wang; Benjamin Vernot; Kavita Garg; Sam John; Richard Sandstrom; Daniel Bates; Lisa Boatman; Theresa K. Canfield; Morgan Diegel; Douglas Dunn; Abigail K. Ebersol; Tristan Frum; Erika Giste; Audra K. Johnson; Ericka M. Johnson; Tanya Kutyavin; Bryan R. Lajoie; Bum Kyu Lee; Kristen Lee; Darin London; Dimitra Lotakis; Shane Neph

DNase I hypersensitive sites (DHSs) are markers of regulatory DNA and have underpinned the discovery of all classes of cis-regulatory elements including enhancers, promoters, insulators, silencers and locus control regions. Here we present the first extensive map of human DHSs identified through genome-wide profiling in 125 diverse cell and tissue types. We identify ∼2.9 million DHSs that encompass virtually all known experimentally validated cis-regulatory sequences and expose a vast trove of novel elements, most with highly cell-selective regulation. Annotating these elements using ENCODE data reveals novel relationships between chromatin accessibility, transcription, DNA methylation and regulatory factor occupancy patterns. We connect ∼580,000 distal DHSs with their target promoters, revealing systematic pairing of different classes of distal DHSs and specific promoter types. Patterning of chromatin accessibility at many regulatory regions is organized with dozens to hundreds of co-activated elements, and the transcellular DNase I sensitivity pattern at a given region can predict cell-type-specific functional behaviours. The DHS landscape shows signatures of recent functional evolutionary constraint. However, the DHS compartment in pluripotent and immortalized cells exhibits higher mutation rates than that in highly differentiated cells, exposing an unexpected link between chromatin accessibility, proliferative potential and patterns of human variation.


Nucleic Acids Research | 2004

JASPAR: an open‐access database for eukaryotic transcription factor binding profiles

Albin Sandelin; Wynand B.L. Alkema; Pär G. Engström; Wyeth W. Wasserman; Boris Lenhard

The analysis of regulatory regions in genome sequences is strongly based on the detection of potential transcription factor binding sites. The preferred models for representation of transcription factor binding specificity have been termed position-specific scoring matrices. JASPAR is an open-access database of annotated, high-quality, matrix-based transcription factor binding site profiles for multicellular eukaryotes. The profiles were derived exclusively from sets of nucleotide sequences experimentally demonstrated to bind transcription factors. The database is complemented by a web interface for browsing, searching and subset selection, an online sequence analysis utility and a suite of programming tools for genome-wide and comparative genomic analysis of regulatory regions. JASPAR is available at http://jaspar. cgb.ki.se.


Nature Genetics | 2006

Genome-wide analysis of mammalian promoter architecture and evolution

Piero Carninci; Albin Sandelin; Boris Lenhard; Shintaro Katayama; Kazuro Shimokawa; Jasmina Ponjavic; Colin A. Semple; Martin S. Taylor; Pär G. Engström; Martin C. Frith; Alistair R. R. Forrest; Wynand B.L. Alkema; Sin Lam Tan; Charles Plessy; Rimantas Kodzius; Timothy Ravasi; Takeya Kasukawa; Shiro Fukuda; Mutsumi Kanamori-Katayama; Yayoi Kitazume; Hideya Kawaji; Chikatoshi Kai; Mari Nakamura; Hideaki Konno; Kenji Nakano; Salim Mottagui-Tabar; Peter Arner; Alessandra Chesi; Stefano Gustincich; Francesca Persichetti

Mammalian promoters can be separated into two classes, conserved TATA box–enriched promoters, which initiate at a well-defined site, and more plastic, broad and evolvable CpG-rich promoters. We have sequenced tags corresponding to several hundred thousand transcription start sites (TSSs) in the mouse and human genomes, allowing precise analysis of the sequence architecture and evolution of distinct promoter classes. Different tissues and families of genes differentially use distinct types of promoters. Our tagging methods allow quantitative analysis of promoter usage in different tissues and show that differentially regulated alternative TSSs are a common feature in protein-coding genes and commonly generate alternative N termini. Among the TSSs, we identified new start sites associated with the majority of exons and with 3′ UTRs. These data permit genome-scale identification of tissue-specific promoters and analysis of the cis-acting elements associated with them.


Nucleic Acids Research | 2014

JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles

Anthony Mathelier; Xiaobei Zhao; Allen W. Zhang; François Parcy; Rebecca Worsley-Hunt; David J. Arenillas; Sorana Buchman; Chih-yu Chen; Alice Yi Chou; Hans Ienasescu; Jonathan S. Lim; Casper Shyr; Ge Tan; Michelle Zhou; Boris Lenhard; Albin Sandelin; Wyeth W. Wasserman

JASPAR (http://jaspar.genereg.net) is the largest open-access database of matrix-based nucleotide profiles describing the binding preference of transcription factors from multiple species. The fifth major release greatly expands the heart of JASPAR—the JASPAR CORE subcollection, which contains curated, non-redundant profiles—with 135 new curated profiles (74 in vertebrates, 8 in Drosophila melanogaster, 10 in Caenorhabditis elegans and 43 in Arabidopsis thaliana; a 30% increase in total) and 43 older updated profiles (36 in vertebrates, 3 in D. melanogaster and 4 in A. thaliana; a 9% update in total). The new and updated profiles are mainly derived from published chromatin immunoprecipitation-seq experimental datasets. In addition, the web interface has been enhanced with advanced capabilities in browsing, searching and subsetting. Finally, the new JASPAR release is accompanied by a new BioPython package, a new R tool package and a new R/Bioconductor data package to facilitate access for both manual and automated methods.


Nucleic Acids Research | 2007

JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update

Jan Christian Bryne; Eivind Valen; Man-Hung Eric Tang; Troels Torben Marstrand; Ole Winther; Isabelle da Piedade; Anders Krogh; Boris Lenhard; Albin Sandelin

JASPAR is a popular open-access database for matrix models describing DNA-binding preferences for transcription factors and other DNA patterns. With its third major release, JASPAR has been expanded and equipped with additional functions aimed at both casual and power users. The heart of the JASPAR database—the JASPAR CORE sub-database—has increased by 12% in size, and three new specialized sub-databases have been added. New functions include clustering of matrix models by similarity, generation of random matrices by sampling from selected sets of existing models and a language-independent Web Service applications programming interface for matrix retrieval. JASPAR is available at http://jaspar.genereg.net.


Nucleic Acids Research | 2010

JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles

Elodie Portales-Casamar; Supat Thongjuea; Andrew T. Kwon; David J. Arenillas; Xiaobei Zhao; Eivind Valen; Dimas Yusuf; Boris Lenhard; Wyeth W. Wasserman; Albin Sandelin

JASPAR (http://jaspar.genereg.net) is the leading open-access database of matrix profiles describing the DNA-binding patterns of transcription factors (TFs) and other proteins interacting with DNA in a sequence-specific manner. Its fourth major release is the largest expansion of the core database to date: the database now holds 457 non-redundant, curated profiles. The new entries include the first batch of profiles derived from ChIP-seq and ChIP-chip whole-genome binding experiments, and 177 yeast TF binding profiles. The introduction of a yeast division brings the convenience of JASPAR to an active research community. As binding models are refined by newer data, the JASPAR database now uses versioning of matrices: in this release, 12% of the older models were updated to improved versions. Classification of TF families has been improved by adopting a new DNA-binding domain nomenclature. A curated catalog of mammalian TFs is provided, extending the use of the JASPAR profiles to additional TFs belonging to the same structural family. The changes in the database set the system ready for more rapid acquisition of new high-throughput data sources. Additionally, three new special collections provide matrix profile data produced by recent alternative high-throughput approaches.


Nucleic Acids Research | 2016

JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles

Anthony Mathelier; Oriol Fornes; David J. Arenillas; Chih-yu Chen; Grégoire Denay; Jessica Lee; Wenqiang Shi; Casper Shyr; Ge Tan; Rebecca Worsley-Hunt; Allen W. Zhang; François Parcy; Boris Lenhard; Albin Sandelin; Wyeth W. Wasserman

JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release.


Nature Reviews Genetics | 2007

Mammalian RNA polymerase II core promoters: insights from genome-wide studies

Albin Sandelin; Piero Carninci; Boris Lenhard; Jasmina Ponjavic; Yoshihide Hayashizaki; David A. Hume

The identification and characterization of mammalian core promoters and transcription start sites is a prerequisite to understanding how RNA polymerase II transcription is controlled. New experimental technologies have enabled genome-wide discovery and characterization of core promoters, revealing that most mammalian genes do not conform to the simple model in which a TATA box directs transcription from a single defined nucleotide position. In fact, most genes have multiple promoters, within which there are multiple start sites, and alternative promoter usage generates diversity and complexity in the mammalian transcriptome and proteome. Promoters can be described by their start site usage distribution, which is coupled to the occurrence of cis-regulatory elements, gene function and evolutionary constraints. A comprehensive survey of mammalian promoters is a major step towards describing and understanding transcriptional control networks.


Nucleic Acids Research | 2004

ConSite: web-based prediction of regulatory elements using cross-species comparison

Albin Sandelin; Wyeth W. Wasserman; Boris Lenhard

ConSite is a user-friendly, web-based tool for finding cis-regulatory elements in genomic sequences. Predictions are based on the integration of binding site prediction generated with high-quality transcription factor models and cross-species comparison filtering (phylogenetic footprinting). By incorporating evolutionary constraints, selectivity is increased by an order of magnitude as compared to single-sequence analysis. ConSite offers several unique features, including an interactive expert system for retrieving orthologous regulatory sequences. Programming modules and biological databases that form the foundation of the ConSite service are freely available to the research community. ConSite is available at http:/www.phylofoot.org/consite.


Nature Reviews Genetics | 2012

Metazoan promoters: emerging characteristics and insights into transcriptional regulation

Boris Lenhard; Albin Sandelin; Piero Carninci

Promoters are crucial for gene regulation. They vary greatly in terms of associated regulatory elements, sequence motifs, the choice of transcription start sites and other features. Several technologies that harness next-generation sequencing have enabled recent advances in identifying promoters and their features, helping researchers who are investigating functional categories of promoters and their modes of regulation. Additional features of promoters that are being characterized include types of histone modifications, nucleosome positioning, RNA polymerase pausing and novel small RNAs. In this Review, we discuss recent findings relating to metazoan promoters and how these findings are leading to a revised picture of what a gene promoter is and how it works.

Collaboration


Dive into the Boris Lenhard's collaboration.

Top Co-Authors

Avatar

Albin Sandelin

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Wilfred van IJcken

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Piero Carninci

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Frank Grosveld

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Altuna Akalin

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wyeth W. Wasserman

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge