Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Borna Müller is active.

Publication


Featured researches published by Borna Müller.


Emerging Infectious Diseases | 2013

Emergence and Spread of Extensively and Totally Drug-Resistant Tuberculosis, South Africa

Marisa Klopper; Robin M. Warren; Cindy Hayes; Nicolaas C. Gey van Pittius; Elizabeth M. Streicher; Borna Müller; Frederick A. Sirgel; Mamisa Chabula-Nxiweni; Ebrahim Hoosain; Gerrit Coetzee; Paul D. van Helden; Thomas C. Victor; Andre Trollip

Factors driving the increase in drug-resistant tuberculosis (TB) in the Eastern Cape Province, South Africa, are not understood. A convenience sample of 309 drug-susceptible and 342 multidrug-resistant (MDR) TB isolates, collected July 2008–July 2009, were characterized by spoligotyping, DNA fingerprinting, insertion site mapping, and targeted DNA sequencing. Analysis of molecular-based data showed diverse genetic backgrounds among drug-sensitive and MDR TB sensu stricto isolates in contrast to restricted genetic backgrounds among pre–extensively drug-resistant (pre-XDR) TB and XDR TB isolates. Second-line drug resistance was significantly associated with the atypical Beijing genotype. DNA fingerprinting and sequencing demonstrated that the pre-XDR and XDR atypical Beijing isolates evolved from a common progenitor; 85% and 92%, respectively, were clustered, indicating transmission. Ninety-three percent of atypical XDR Beijing isolates had mutations that confer resistance to 10 anti-TB drugs, and some isolates also were resistant to para-aminosalicylic acid. These findings suggest the emergence of totally drug-resistant TB.


Emerging Infectious Diseases | 2013

Zoonotic Mycobacterium bovis- induced Tuberculosis in Humans

Borna Müller; Salome Esther Dürr; Silvia Alonso; Jan Hattendorf; Cláudio J. M. Laisse; Sven D.C. Parsons; Paul D. van Helden; Jakob Zinsstag

We aimed to estimate the global occurrence of zoonotic tuberculosis (TB) caused by Mycobacterium bovis or M. caprae infections in humans by performing a multilingual, systematic review and analysis of relevant scientific literature of the last 2 decades. Although information from many parts of the world was not available, data from 61 countries suggested a low global disease incidence. In regions outside Africa included in this study, overall median proportions of zoonotic TB of ≤1.4% in connection with overall TB incidence rates ≤71/100,000 population/year suggested low incidence rates. For countries of Africa included in the study, we multiplied the observed median proportion of zoonotic TB cases of 2.8% with the continental average overall TB incidence rate of 264/100,000 population/year, which resulted in a crude estimate of 7 zoonotic TB cases/100,000 population/year. These generally low incidence rates notwithstanding, available data indicated substantial consequences of this disease for some population groups and settings.


Antimicrobial Agents and Chemotherapy | 2013

Putative Compensatory Mutations in the rpoC Gene of Rifampin-Resistant Mycobacterium tuberculosis Are Associated with Ongoing Transmission

M. de Vos; Borna Müller; Sonia Borrell; Philippa A. Black; P. D. van Helden; R.M. Warren; Sebastien Gagneux; T. C. Victor

ABSTRACT Rifampin resistance in clinical isolates of Mycobacterium tuberculosis arises primarily through the selection of bacterial variants harboring mutations in the 81-bp rifampin resistance-determining region of the rpoB gene. While these mutations were shown to infer a fitness cost in the absence of antibiotic pressure, compensatory mutations in rpoA and rpoC were identified which restore the fitness of rifampin-resistant bacteria carrying mutations in rpoB. To investigate the epidemiological relevance of these compensatory mutations, we analyzed 286 drug-resistant and 54 drug-susceptible clinical M. tuberculosis isolates from the Western Cape, South Africa, a high-incidence setting of multidrug-resistant tuberculosis. Sequencing of a portion of the RpoA-RpoC interaction region of the rpoC gene revealed that 23.5% of all rifampin-resistant isolates tested carried a nonsynonymous mutation in this region. These putative compensatory mutations in rpoC were associated with transmission, as 30.8% of all rifampin-resistant isolates with an IS6110 restriction fragment length polymorphism (RFLP) pattern belonging to a recognized RFLP cluster harbored putative rpoC mutations. Such mutations were present in only 9.4% of rifampin-resistant isolates with unique RFLP patterns (P < 0.01). Moreover, these putative compensatory mutations were associated with specific strain genotypes and the rpoB S531L rifampin resistance mutation. Among isolates harboring this rpoB mutation, 44.1% also harbored rpoC mutations, while only 4.1% of the isolates with other rpoB mutations exhibited mutations in rpoC (P < 0.001). Our study supports a role for rpoC mutations in the transmission of multidrug-resistant tuberculosis and illustrates how epistatic interactions between drug resistance-conferring mutations, compensatory mutations, and different strain genetic backgrounds might influence compensatory evolution in drug-resistant M. tuberculosis.


Journal of Bacteriology | 2009

African 1, an Epidemiologically Important Clonal Complex of Mycobacterium bovis Dominant in Mali, Nigeria, Cameroon, and Chad

Borna Müller; Stefan Berg; M. Carmen Garcia-Pelayo; James Dale; M. Laura Boschiroli; Simeon Cadmus; Bongo Naré Richard Ngandolo; Sylvain Godreuil; Colette Diguimbaye-Djaibé; Rudovick R. Kazwala; Bassirou Bonfoh; Betty M. Njanpop-Lafourcade; Naima Sahraoui; Djamel Guetarni; Abraham Aseffa; Meseret H. Mekonnen; Voahangy Rasolofo Razanamparany; Herimanana Ramarokoto; Berit Djønne; James Oloya; Adelina Machado; Custodia Mucavele; Eystein Skjerve; Françoise Portaels; Leen Rigouts; Anita Luise Michel; Annélle Müller; Gunilla Källenius; Paul D. van Helden; R. Glyn Hewinson

We have identified a clonal complex of Mycobacterium bovis present at high frequency in cattle in population samples from several sub-Saharan west-central African countries. This closely related group of bacteria is defined by a specific chromosomal deletion (RDAf1) and can be identified by the absence of spacer 30 in the standard spoligotype typing scheme. We have named this group of strains the African 1 (Af1) clonal complex and have defined the spoligotype signature of this clonal complex as being the same as the M. bovis BCG vaccine strain but with the deletion of spacer 30. Strains of the Af1 clonal complex were found at high frequency in population samples of M. bovis from cattle in Mali, Cameroon, Nigeria, and Chad, and using a combination of variable-number tandem repeat typing and spoligotyping, we show that the population of M. bovis in each of these countries is distinct, suggesting that the recent mixing of strains between countries is not common in this area of Africa. Strains with the Af1-specific deletion (RDAf1) were not identified in M. bovis isolates from Algeria, Burundi, Ethiopia, Madagascar, Mozambique, South Africa, Tanzania, and Uganda. Furthermore, the spoligotype signature of the Af1 clonal complex has not been identified in population samples of bovine tuberculosis from Europe, Iran, and South America. These observations suggest that the Af1 clonal complex is geographically localized, albeit to several African countries, and we suggest that the dominance of the clonal complex in this region is the result of an original introduction into cows naïve to bovine tuberculosis.


Infection, Genetics and Evolution | 2011

European 1: a globally important clonal complex of Mycobacterium bovis.

Noel H. Smith; Stefan Berg; James Dale; Adrian Allen; Sabrina Rodríguez; Beatriz Romero; Filipa Matos; Solomon Ghebremichael; Claudine Karoui; Chiara Donati; Adelina Machado; Custodia Mucavele; Rudovick R. Kazwala; Simeon Cadmus; Bongo Naré Richard Ngandolo; Meseret Habtamu; James Oloya; Annélle Müller; Feliciano Milian-Suazo; Olga Andrievskaia; Michaela Projahn; Soledad Barandiarán; Analía Macías; Borna Müller; Marcos Santos Zanini; Cássia Yumi Ikuta; Cesar Alejandro Rosales Rodriguez; Sônia Regina Pinheiro; Alvaro Figueroa; Sang-Nae Cho

We have identified a globally important clonal complex of Mycobacterium bovis by deletion analysis of over one thousand strains from over 30 countries. We initially show that over 99% of the strains of M. bovis, the cause of bovine tuberculosis, isolated from cattle in the Republic of Ireland and the UK are closely related and are members of a single clonal complex marked by the deletion of chromosomal region RDEu1 and we named this clonal complex European 1 (Eu1). Eu1 strains were present at less than 14% of French, Portuguese and Spanish isolates of M. bovis but are rare in other mainland European countries and Iran. However, strains of the Eu1 clonal complex were found at high frequency in former trading partners of the UK (USA, South Africa, New Zealand, Australia and Canada). The Americas, with the exception of Brazil, are dominated by the Eu1 clonal complex which was at high frequency in Argentina, Chile, Ecuador and Mexico as well as North America. Eu1 was rare or absent in the African countries surveyed except South Africa. A small sample of strains from Taiwan were non-Eu1 but, surprisingly, isolates from Korea and Kazakhstan were members of the Eu1 clonal complex. The simplest explanation for much of the current distribution of the Eu1 clonal complex is that it was spread in infected cattle, such as Herefords, from the UK to former trading partners, although there is evidence of secondary dispersion since. This is the first identification of a globally dispersed clonal complex M. bovis and indicates that much of the current global distribution of this important veterinary pathogen has resulted from relatively recent International trade in cattle.


BMC Veterinary Research | 2009

Molecular characterization of Mycobacterium bovis strains isolated from cattle slaughtered at two abattoirs in Algeria

Naima Sahraoui; Borna Müller; Djamel Guetarni; Fadela Boulahbal; Djamel Yala; Rachid Ouzrout; Stefan Berg; Noel H. Smith; Jakob Zinsstag

BackgroundBovine Tuberculosis is prevalent in Algeria despite governmental attempts to control the disease. The objective of this study was to conduct, for the first time, molecular characterization of a population sample of Mycobacterium bovis strains isolated from slaughter cattle in Algeria. Between August and November 2007, 7250 animals were consecutively screened at the abattoirs of Algiers and Blida. In 260 animals, gross visible granulomatous lesions were detected and put into culture. Bacterial isolates were subsequently analysed by molecular methods.ResultsAltogether, 101 bacterial strains from 100 animals were subjected to molecular characterization. M. bovis was isolated from 88 animals. Other bacteria isolated included one strain of M. caprae, four Rhodococcus equi strains, three Non-tuberculous Mycobacteria (NTM) and five strains of other bacterial species. The M. bovis strains isolated showed 22 different spoligotype patterns; four of them had not been previously reported. The majority of M. bovis strains (89%) showed spoligotype patterns that were previously observed in strains from European cattle. Variable Number of Tandem Repeat (VNTR) typing supported a link between M. bovis strains from Algeria and France. One spoligotype pattern has also been shown to be frequent in M. bovis strains from Mali although the VNTR pattern of the Algerian strains differed from the Malian strains.ConclusionM. bovis infections account for a high amount of granulomatous lesions detected in Algerian slaughter cattle during standard meat inspection at Algiers and Blida abattoir. Molecular typing results suggested a link between Algerian and European strains of M. bovis.


Journal of Clinical Microbiology | 2012

Population Structure of Multi- and Extensively Drug-Resistant Mycobacterium tuberculosis Strains in South Africa

Violet N. Chihota; Borna Müller; C. K. Mlambo; Manormoney Pillay; Marisa Tait; Elizabeth M. Streicher; E. Marais; G. D. van der Spuy; M. Hanekom; Gerrit Coetzee; Andre Trollip; Cindy Hayes; M Bosman; N. C. Gey van Pittius; T. C. Victor; P. D. van Helden; Robin M. Warren

ABSTRACT Genotyping of multidrug-resistant (MDR) Mycobacterium tuberculosis strains isolated from tuberculosis (TB) patients in four South African provinces (Western Cape, Eastern Cape, KwaZulu-Natal, and Gauteng) revealed a distinct population structure of the MDR strains in all four regions, despite the evidence of substantial human migration between these settings. In all analyzed provinces, a negative correlation between strain diversity and an increasing level of drug resistance (from MDR-TB to extensively drug-resistant TB [XDR-TB]) was observed. Strains predominating in XDR-TB in the Western and Eastern Cape and KwaZulu-Natal Provinces were strongly associated with harboring an inhA promoter mutation, potentially suggesting a role of these mutations in XDR-TB development in South Africa. Approximately 50% of XDR-TB cases detected in the Western Cape were due to strains probably originating from the Eastern Cape. This situation may illustrate how failure of efficient health care delivery in one setting can burden health clinics in other areas.


Infection, Genetics and Evolution | 2012

Emergence and treatment of multidrug resistant (MDR) and extensively drug-resistant (XDR) tuberculosis in South Africa

Elizabeth M. Streicher; Borna Müller; Violet N. Chihota; Charmaine K. Mlambo; Marisa Tait; Manormoney Pillay; Andre Trollip; Kim G.P. Hoek; Frederick A. Sirgel; Nicolaas C. Gey van Pittius; Paul D. van Helden; Thomas C. Victor; Robin M. Warren

Drug resistant tuberculosis (TB) has reached alarming proportions in South Africa, draining valuable resources that are needed to fight drug susceptible TB. It is currently estimated that 9.6% of all TB cases have multi-drug resistant (MDR)-TB, thereby ranking South Africa as one of the highest MDR-TB burden countries in the world. Molecular epidemiological studies have demonstrated the complexity of the epidemic and have clearly shown that the epidemic is driven by transmission as a consequence of low cases detection and diagnostic delay. The latter has in turn fueled the amplification of drug resistance, ultimately leading to the emergence of extensively drug resistant (XDR)-TB. Despite the introduction of new drugs to combat this scourge, culture conversion rates for XDR-TB remain below 20%. Failure to achieve cure may be explained from DNA sequencing results which have demonstrated mutations in 7 genes encoding resistance to at least 8 anti-TB drugs. This review shows how molecular epidemiology has provided novel insights into the MDR-TB epidemic in South Africa and thereby has highlighted the challenges that need to be addressed regarding the diagnosis and treatment of MDR-TB. An important step towards for curbing this epidemic will be collaboration between clinicians, laboratories and researchers to establish scientific knowledge and medical expertise to more efficiently guide public health policy.


Journal of Bacteriology | 2011

African 2, a Clonal Complex of Mycobacterium bovis Epidemiologically Important in East Africa

Stefan Berg; M. Carmen Garcia-Pelayo; Borna Müller; Elena Hailu; Benon B. Asiimwe; Kristin Kremer; James Dale; M. Beatrice Boniotti; Sabrina Rodríguez; Leen Rigouts; Rebuma Firdessa; Adelina Machado; Custodia Mucavele; Bongo Naré Richard Ngandolo; Judith Bruchfeld; Laura Boschiroli; Annélle Müller; Naima Sahraoui; Maria Pacciarini; Simeon Cadmus; Moses Joloba; Dick van Soolingen; Anita Luise Michel; Berit Djønne; Alicia Aranaz; Jakob Zinsstag; Paul D. van Helden; Françoise Portaels; Rudovick R. Kazwala; Gunilla Källenius

We have identified a clonal complex of Mycobacterium bovis isolated at high frequency from cattle in Uganda, Burundi, Tanzania, and Ethiopia. We have named this related group of M. bovis strains the African 2 (Af2) clonal complex of M. bovis. Af2 strains are defined by a specific chromosomal deletion (RDAf2) and can be identified by the absence of spacers 3 to 7 in their spoligotype patterns. Deletion analysis of M. bovis isolates from Algeria, Mali, Chad, Nigeria, Cameroon, South Africa, and Mozambique did not identify any strains of the Af2 clonal complex, suggesting that this clonal complex of M. bovis is localized in East Africa. The specific spoligotype pattern of the Af2 clonal complex was rarely identified among isolates from outside Africa, and the few isolates that were found and tested were intact at the RDAf2 locus. We conclude that the Af2 clonal complex is localized to cattle in East Africa. We found that strains of the Af2 clonal complex of M. bovis have, in general, four or more copies of the insertion sequence IS6110, in contrast to the majority of M. bovis strains isolated from cattle, which are thought to carry only one or a few copies.


Evolution, medicine, and public health | 2013

Epistasis between antibiotic resistance mutations drives the evolution of extensively drug-resistant tuberculosis

Sonia Borrell; Youjin Teo; Federica Giardina; Elizabeth M. Streicher; Marisa Klopper; Julia Feldmann; Borna Müller; Thomas C. Victor; Sebastien Gagneux

The authors show that some mycobacteria carrying mutations conferring resistance to two antibiotics have a higher competitive fitness than corresponding strains carrying only one of these mutations. Moreover, the double-resistant strains exhibiting the highest competitive fitness in the laboratory are overrepresented in clinical settings with a high burden of extensively drug-resistant tuberculosis.

Collaboration


Dive into the Borna Müller's collaboration.

Top Co-Authors

Avatar

Jakob Zinsstag

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar

Paul D. van Helden

National Research Foundation of South Africa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerrit Coetzee

National Health Laboratory Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. C. Victor

Stellenbosch University

View shared research outputs
Researchain Logo
Decentralizing Knowledge