Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bostjan Genorio is active.

Publication


Featured researches published by Bostjan Genorio.


Nature Materials | 2010

Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules.

Bostjan Genorio; Dusan Strmcnik; Ram Subbaraman; Dusan Tripkovic; G. Karapetrov; Vojislav R. Stamenkovic; Stane Pejovnik; Nenad M. Markovic

The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their catalytic behaviour as well as the long-term stability of the metal catalysts and supports in hostile electrochemical environments. The methods used to improve catalytic activity are diverse, ranging from the alloying and de-alloying of platinum to the synthesis of platinum core-shell catalysts. However, methods to improve the stability of the carbon supports and catalyst nanoparticles are limited, especially during shutdown (when hydrogen is purged from the anode by air) and startup (when air is purged from the anode by hydrogen) conditions when the cathode potential can be pushed up to 1.5 V (ref. 11). Under the latter conditions, stability of the cathode materials is strongly affected (carbon oxidation reaction) by the undesired oxygen reduction reaction (ORR) on the anode side. This emphasizes the importance of designing selective anode catalysts that can efficiently suppress the ORR while fully preserving the Pt-like activity for the hydrogen oxidation reaction. Here, we demonstrate that chemically modified platinum with a self-assembled monolayer of calix[4]arene molecules meets this challenging requirement.


ACS Nano | 2012

In situ intercalation replacement and selective functionalization of graphene nanoribbon stacks.

Bostjan Genorio; Wei Lu; Ayrat M. Dimiev; Yu Zhu; Abdul-Rahman O. Raji; Barbara Novosel; Lawrence B. Alemany; James M. Tour

A cost-effective and potentially industrially scalable, in situ functionalization procedure for preparation of soluble graphene nanoribbon (GNRs) from commercially available carbon nanotubes is presented. The physical characteristics of the functionalized product were determined using SEM, evolved gas analysis, X-ray diffraction, solid-state (13)C NMR, Raman spectroscopy, and GC-MS analytical techniques. A relatively high preservation of electrical properties in the bulk material was observed. Moreover, replacement of intercalated potassium with haloalkanes was obtained. While carbon nanotubes can be covalently functionalized, the conversion of the sp(2)-hybridized carbon atoms to sp(3)-hybridized atoms dramatically lowers their conductivity, but edge functionalized GNRs permit their heavy functionalization while leaving the basal planes intact.


ACS Nano | 2013

Functionalized Low Defect Graphene Nanoribbons and Polyurethane Composite Film for Improved Gas Barrier and Mechanical Performances

Changsheng Xiang; Paris Cox; Ákos Kukovecz; Bostjan Genorio; Daniel P. Hashim; Zheng Yan; Zhiwei Peng; Chih Chau Hwang; Gedeng Ruan; Errol L. G. Samuel; Parambath M. Sudeep; Zoltán Kónya; Robert Vajtai; Pulickel M. Ajayan; James M. Tour

A thermoplastic polyurethane (TPU) composite film containing hexadecyl-functionalized low-defect graphene nanoribbons (HD-GNRs) was produced by solution casting. The HD-GNRs were well distributed within the polyurethane matrix, leading to phase separation of the TPU. Nitrogen gas effective diffusivity of TPU was decreased by 3 orders of magnitude with only 0.5 wt % HD-GNRs. The incorporation of HD-GNRs also improved the mechanical properties of the composite films, as predicted by the phase separation and indicated by tensile tests and dynamic mechanical analyses. The improved properties of the composite film could lead to potential applications in food packaging and lightweight mobile gas storage containers.


ACS Applied Materials & Interfaces | 2013

Permittivity of dielectric composite materials comprising graphene nanoribbons. The effect of nanostructure.

Ayrat M. Dimiev; Dante Zakhidov; Bostjan Genorio; Korede Oladimeji; Benjamin Crowgey; Leo C. Kempel; Edward J. Rothwell; James M. Tour

New lightweight, flexible dielectric composite materials were fabricated by the incorporation of several new carbon nanostructures into a dielectric host matrix. Both the permittivity and loss tangent values of the resulting composites were widely altered by varying the type and content of the conductive filler. The dielectric constant was tuned from moderate to very high values, while the corresponding loss tangent changed from ultralow to extremely high. The data exemplify that nanoscale changes in the structure of the conductive filler result in dramatic changes in the dielectric properties of composites. A microcapacitor model most explains the behavior of the dielectric composites.


Langmuir | 2008

Synthesis and Self-Assembly of Thio Derivatives of Calix[4]arene on Noble Metal Surfaces

Bostjan Genorio; Tao He; Anton Meden; Slovenko Polanc; Janko Jamnik; James M. Tour

Self-assembled monolayers (SAMs) provide a simple route to functionalize electrode surfaces with organic molecules. Herein we use cavity-containing derivatives of calix[4]arenes in SAMs. Bound to noble metal surface, the assembled molecules are candidates to serve as molecular sieves for H 2 molecules and H (+) ions, which could have relevance for fuel cell applications. Tetra- O-alkylated calix[4]arenes with thiolacetate and thiolamide wide-rim anchoring groups in cone and partial-cone conformations were designed, synthesized and self-assembled onto Au, Pt, and Pd surfaces. The resulting SAMs were systematically examined. Single crystal X-ray diffraction of 5,11,17,23-tetrakis(thioacetyl)-25,26,27,28-tetra- i-propoxycalix[4]arene confirmed the cone conformation and revealed the cavity dimensions of the SAMs that were formed by immersing noble metal substrates (Au, Pt and Pd deposited on Si-wafers) in solutions of calix[4]arenes. Surface characterization techniques including ellipsometry, cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS) were used, indicating that the metal surface is terminated with a monomolecular layer. Experimental thicknesses obtained from the ellipsometry are consistent with the calculated values. CV results showed 50 to 80% physical passivation against the Fe(CN) 6 (3-/4-) couple, implying an overall relatively low concentration of defects and pinholes in the films. The binding energies of the S2p core level in the XPS were consistent with the literature values and revealed that up to 3.2 out of four anchoring groups were bonded to the noble metal surface.


ACS Nano | 2013

Functionalized graphene nanoribbons via anionic polymerization initiated by alkali metal-intercalated carbon nanotubes.

Wei Lu; Gedeng Ruan; Bostjan Genorio; Yu Zhu; Barbara Novosel; Zhiwei Peng; James M. Tour

The preparation of polymer-functionalized graphene nanoribbons (PF-GNRs) in a one-pot synthesis is described. Multiwalled carbon nanotubes (MWCNTs) were intercalated by potassium under vapor- or liquid-phase conditions, followed by the addition of vinyl or epoxide monomers, resulting in PF-GNRs. Scanning electron microscopy, thermogravimetric mass spectrometry, and X-ray photoelectron spectroscopy were used to characterize the PF-GNRs. Also explored here is the correlation between the splitting of MWCNTs, the intrinsic properties of the intercalants and the degree of defects and graphitization of the starting MWCNTs. The PF-GNRs could have applications in conductive composites, transparent electrodes, heat circuits, and supercapacitors.


Chemsuschem | 2015

Anthraquinone‐Based Polymer as Cathode in Rechargeable Magnesium Batteries

Jan Bitenc; Klemen Pirnat; Tanja Bančič; Miran Gaberšček; Bostjan Genorio; Anna Randon-Vitanova; Robert Dominko

Mg batteries are a promising battery technology that could lead to safer and significantly less expensive non-aqueous batteries with energy densities comparable or even better than state-of-the-art Li-ion batteries. Although the first prototype Mg battery using stable Mo6S8 as cathode was introduced over fifteen years ago, major challenges remain to be solved. In particular, the design of high energy cathode materials and the development of non-corrosive electrolytes with high oxidative stability are issues that need to be tackled. Herein, we present a new, general, and robust approach towards achieving stable cycling of Mg batteries. The core of our approach is the use of stable polymer cathode and Mg powder anode coupled with non-nucleophilic electrolytes. Our systems exhibit an excellent rate capability and significant improvement in electrochemical stability.


ACS Applied Materials & Interfaces | 2016

Composites of Graphene Nanoribbon Stacks and Epoxy for Joule Heating and Deicing of Surfaces

Abdul-Rahman O. Raji; Tanvi Varadhachary; Kewang Nan; Tuo Wang; Jian Lin; Yongsung Ji; Bostjan Genorio; Yu Zhu; Carter Kittrell; James M. Tour

A conductive composite of graphene nanoribbon (GNR) stacks and epoxy is fabricated. The epoxy is filled with the GNR stacks, which serve as a conductive additive. The GNR stacks are on average 30 nm thick, 250 nm wide, and 30 μm long. The GNR-filled epoxy composite exhibits a conductivity >100 S/m at 5 wt % GNR content. This permits application of the GNR-epoxy composite for deicing of surfaces through Joule (voltage-induced) heating generated by the voltage across the composite. A power density of 0.5 W/cm(2) was delivered to remove ∼1 cm-thick (14 g) monolith of ice from a static helicopter rotor blade surface in a -20 °C environment.


ACS Applied Materials & Interfaces | 2014

Radio-Frequency-Transparent, Electrically Conductive Graphene Nanoribbon Thin Films as Deicing Heating Layers

Vladimir Volman; Yu Zhu; Abdul-Rahman O. Raji; Bostjan Genorio; Wei Lu; Changsheng Xiang; Carter Kittrell; James M. Tour

Deicing heating layers are frequently used in covers of large radio-frequency (RF) equipment, such as radar, to remove ice that could damage the structures or make them unstable. Typically, the deicers are made using a metal framework and inorganic insulator; commercial resistive heating materials are often nontransparent to RF waves. The preparation of a sub-skin-depth thin film, whose thickness is very small relative to the RF skin (or penetration) depth, is the key to minimizing the RF absorption. The skin depth of typical metals is on the order of a micrometer at the gigahertz frequency range. As a result, it is very difficult for conventional conductive materials (such as metals) to form large-area sub-skin-depth films. In this report, we disclose a new deicing heating layer composite made using graphene nanoribbons (GNRs). We demonstrate that the GNR film is thin enough to permit RF transmission. This metal-free, ultralight, robust, and scalable graphene-based RF-transparent conductive coating could significantly reduce the size and cost of deicing coatings for RF equipment covers. This is important in many aviation and marine applications. This is a demonstration of the efficacy and applicability of GNRs to afford performances unattainable by conventional materials.


Journal of Physics D | 2014

Functionalization of graphene nanoribbons

Bostjan Genorio; Andrej Znidarsic

Graphene nanoribbon (GNR) is a recently discovered carbon allotrope, which can be described as a stripe of graphene. Pseudo-one-dimensionality exerts additional confinement on the electrons resulting in the formation of a band gap relevant for electronic devices. Due to distinct physical and chemical properties it is a promising material for several applications. To expand the range of potential applications and to improve processability, chemical functionalization of GNRs is required. This review aims to provide a concise and systematic coverage of recent work in chemical functionalization of GNRs. We will focus on longitudinal carbon nanotube unzipping, functionalization with aryl diazonium salts, non-covalent functionalization, bottom-up synthesis and one pot carbon nanotube unzipping with in situ edge functionalization.

Collaboration


Dive into the Bostjan Genorio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Lu

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Zhu

University of Akron

View shared research outputs
Top Co-Authors

Avatar

Jan Bitenc

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dusan Strmcnik

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge