Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Botond Gaál is active.

Publication


Featured researches published by Botond Gaál.


Neuroscience Letters | 2012

Effect of unilateral labyrinthectomy on the molecular composition of perineuronal nets in the lateral vestibular nucleus of the rat

Adam Deak; Tímea Bácskai; Botond Gaál; Éva Rácz; Klara Matesz

Disturbances in vestibular functions caused by unilateral labyrinthectomy (UL) are spontaneously restored during the process of vestibular compensation due to the plasticity of CNS. The underlying molecular background of vestibular compensation is not yet fully understood. Recent studies have shown that the extracellular matrix (ECM) molecules have either permissive or non-permissive effect on the neural plasticity. In our previous study we have demonstrated changes in the expression of hyaluronan (HA) in the vestibular nuclei (VN) of the frog following peripheral vestibular lesion. The present work was undertaken to examine the expression of the HA and chondroitin sulfate proteoglycans (CSPGs) in the lateral vestibular nucleus (LVN) of the rat following UL by using histochemical methods. On the first postoperative day, the condensation of the ECM around the neurons, the perineuronal net (PNN) was not distinguished from the surrounding neuropil on the side of UL indicating the desorganization of its molecular structure. At survival day 3, the PNN was recognizable with the HA probe, whereas its staining for the CSPGs was restored by the time of the seventh postoperative day. In the neuropil, the intensity of the HA increased on the operated side, while the CSPGs reaction almost completely disappeared. The present study have demonstrated for the first time that the UL is accompanied by the modification of the HA, and CSPG staining pattern in the PNN of the LVN in the rat. As the reorganization of the PNN corresponds to the restoration of spontaneous activity of vestibular neurons, our study implies the role of HA and CSPGs in the vestibular compensation.


Brain Structure & Function | 2014

Molecular composition of extracellular matrix in the vestibular nuclei of the rat

Éva Rácz; Botond Gaál; Szilvia Kecskes; Clara Matesz

Previous studies have demonstrated that the molecular and structural composition of the extracellular matrix (ECM) shows regional differences in the central nervous system. By using histochemical and immunohistochemical methods, we provide here a detailed map of the distribution of ECM molecules in the vestibular nuclear complex (VNC) of the rat. We have observed common characteristics of the ECM staining pattern in the VNC and a number of differences among the individual vestibular nuclei and their subdivisions. The perineuronal net (PNN), which is the pericellular condensation of ECM, showed the most intense staining for hyaluronan, aggrecan, brevican and tenascin-R in the superior, lateral and medial vestibular nuclei, whereas the HAPLN1 link protein and the neurocan exhibited moderate staining intensity. The rostral part of the descending vestibular nucleus (DVN) presented a similar staining pattern in the PNN, with the exception of brevican, which was negative. The caudal part of the DVN had the weakest staining for all ECM molecules in the PNN. Throughout the VNC, versican staining in the PNN, when present, was distinctive due to its punctuate appearance. The neuropil also exhibited heterogeneity among the individual vestibular nuclei in ECM staining pattern and intensity. We find that the heterogeneous distribution of ECM molecules is associated in many cases with the variable cytoarchitecture and hodological organization of the vestibular nuclei, and propose that differences in the ECM composition may be related to specific neuronal functions associated with gaze and posture control and vestibular compensation.


Neuroscience | 2014

Distribution of extracellular matrix macromolecules in the vestibular nuclei and cerebellum of the frog, Rana esculenta.

Botond Gaál; Éva Rácz; Tamás Juhász; K. Holló; Clara Matesz

The axons of transected and re-apposed vestibulocochlear nerve of the frog, in contrast to mammalian species, regenerate and establish functional contacts within their original termination areas of the vestibular nuclear complex and the cerebellum. The lack of regenerative capability of the mammalian central nervous system (CNS) is partially attributed to various extracellular matrix (ECM) molecules, such as chondroitin sulfate proteoglycans (CSPG) and tenascin-R (TN-R), which exert inhibition on axon regeneration. In contrast to these molecules, hyaluronan (HA) was reported to be permissive for CNS regeneration. Using histochemical and immunohistochemical methods, we investigated the distribution pattern of these molecules in the medial (MVN), lateral (LVN), superior and descending vestibular nuclei and the cerebellum of the frog and detected regional differences in the organization of the ECM. In the vestibular nuclear complex, pericellular condensation of the ECM, the perineuronal nets (PNNs) were recognizable in the LVN and MVN and were positive only for HA. The neuropil of the vestibular nuclei showed either a diffuse appearance with varying intensity of reactions, or dots and ring-like structures, which may represent the perinodal ECM of the vestibular fibers. In the cerebellum, indistinct PNNs that were only labeled for HA were present in the granular layer. Our findings suggest that the HA-rich, but CSPG and TN-R-free PNNs may be associated with the high degree of plasticity and regenerative potential of the amphibian vestibular system.


Neuroscience | 2015

Extracellular matrix molecules exhibit unique expression pattern in the climbing fiber-generating precerebellar nucleus, the inferior olive.

Szilvia Kecskes; Botond Gaál; Éva Rácz; András Birinyi; A. Hunyadi; Clara Matesz

Extracellular matrix (ECM) accumulates around different neuronal compartments of the central nervous system (CNS) or appears in diffuse reticular form throughout the neuropil. In the adult CNS, the perineuronal net (PNN) surrounds the perikarya and dendrites of various neuron types, whereas the axonal coats are aggregations of ECM around the individual synapses, and the nodal ECM is localized at the nodes of Ranvier. Previous studies in our laboratory demonstrated on rats that the heterogeneous distribution and molecular composition of ECM is associated with the variable cytoarchitecture and hodological organization of the vestibular nuclei and may also be related to their specific functions in gaze and posture control as well as in the compensatory mechanisms following vestibular lesion. Here, we investigated the ECM expression pattern in the climbing fiber-generating inferior olive (IO), which is functionally related to the vestibular nuclei. By using histochemical and immunohistochemical methods, the most characteristic finding was the lack of PNNs, presumably due to the absence of synapses on the perikarya and proximal dendrites of IO neurons. On the other hand, the darkly stained dots or ring-like structures in the neuropil might represent the periaxonal coats around the axon terminals of olivary synaptic glomeruli. We have observed positive ECM reaction for the hyaluronan, tenascin-R, hyaluronan and proteoglycan link protein 1 (HAPLN1) and various chondroitin sulfate proteoglycans. The staining intensity and distribution of ECM molecules revealed a number of differences between the functionally different subnuclei of IO. We hypothesized that the different molecular composition and intensity differences of ECM reaction is associated with different control mechanisms of gaze and posture control executed by the visuomotor-vestibular, somatosensory and integrative subnuclei of the IO.


Scientific Reports | 2017

Phosphorylated Histone 3 at Serine 10 Identifies Activated Spinal Neurons and Contributes to the Development of Tissue Injury-Associated Pain

Jose Vicente Torres-Pérez; Péter Sántha; Angelika Varga; Peter Szucs; Joao Sousa-Valente; Botond Gaál; Miklós Sivadó; Anna P. Andreou; Sara Beattie; Bence Nagy; Klara Matesz; J. Simon C. Arthur; Gábor Jancsó; Istvan Nagy

Transcriptional changes in superficial spinal dorsal horn neurons (SSDHN) are essential in the development and maintenance of prolonged pain. Epigenetic mechanisms including post-translational modifications in histones are pivotal in regulating transcription. Here, we report that phosphorylation of serine 10 (S10) in histone 3 (H3) specifically occurs in a group of rat SSDHN following the activation of nociceptive primary sensory neurons by burn injury, capsaicin application or sustained electrical activation of nociceptive primary sensory nerve fibres. In contrast, brief thermal or mechanical nociceptive stimuli, which fail to induce tissue injury or inflammation, do not produce the same effect. Blocking N-methyl-D-aspartate receptors or activation of extracellular signal-regulated kinases 1 and 2, or blocking or deleting the mitogen- and stress-activated kinases 1 and 2 (MSK1/2), which phosphorylate S10 in H3, inhibit up-regulation in phosphorylated S10 in H3 (p-S10H3) as well as fos transcription, a down-stream effect of p-S10H3. Deleting MSK1/2 also inhibits the development of carrageenan-induced inflammatory heat hyperalgesia in mice. We propose that p-S10H3 is a novel marker for nociceptive processing in SSDHN with high relevance to transcriptional changes and the development of prolonged pain.


Neuroscience | 2016

Heterogeneous expression of extracellular matrix molecules in the red nucleus of the rat

Éva Rácz; Botond Gaál; Clara Matesz

Previous studies in our laboratory showed that the organization and heterogeneous molecular composition of extracellular matrix is associated with the variable cytoarchitecture, connections and specific functions of the vestibular nuclei and two related areas of the vestibular neural circuits, the inferior olive and prepositus hypoglossi nucleus. The aim of the present study is to reveal the organization and distribution of various molecular components of extracellular matrix in the red nucleus, a midbrain premotor center. Morphologically and functionally the red nucleus is comprised of the magno- and parvocellular parts, with overlapping neuronal population. By using histochemical and immunohistochemical methods, the extracellular matrix appeared as perineuronal net, axonal coat, perisynaptic matrix or diffuse network in the neuropil. In both parts of the red nucleus we have observed positive hyaluronan, tenascin-R, link protein, and lectican (aggrecan, brevican, versican, neurocan) reactions. Perineuronal nets were detected with each of the reactions and the aggrecan showed the most intense staining in the pericellular area. The two parts were clearly distinguished on the basis of neurocan and HAPLN1 expression as they have lower intensity in the perineuronal nets of large cells and in the neuropil of the magnocellular part. Additionally, in contrast to this pattern, the aggrecan was heavily labeled in the magnocellular region sharply delineating from the faintly stained parvocellular area. The most characteristic finding was that the appearance of perineuronal nets was related with the neuronal size independently from its position within the two subdivisions of red nucleus. In line with these statements none of the extracellular matrix molecules were restricted exclusively to the magno- or parvocellular division. The chemical heterogeneity of the perineuronal nets may support the recently accepted view that the red nucleus comprises more different populations of neurons than previously reported.


Brain Structure & Function | 2016

Neural circuits underlying tongue movements for the prey-catching behavior in frog: distribution of primary afferent terminals on motoneurons supplying the tongue

Szilvia Kecskes; Clara Matesz; Botond Gaál; András Birinyi

The hypoglossal motor nucleus is one of the efferent components of the neural network underlying the tongue prehension behavior of Ranid frogs. Although the appropriate pattern of the motor activity is determined by motor pattern generators, sensory inputs can modify the ongoing motor execution. Combination of fluorescent tracers were applied to investigate whether there are direct contacts between the afferent fibers of the trigeminal, facial, vestibular, glossopharyngeal-vagal, hypoglossal, second cervical spinal nerves and the hypoglossal motoneurons. Using confocal laser scanning microscope, we detected different number of close contacts from various sensory fibers, which were distributed unequally between the motoneurons innervating the protractor, retractor and inner muscles of the tongue. Based on the highest number of contacts and their closest location to the perikaryon, the glossopharyngeal–vagal nerves can exert the strongest effect on hypoglossal motoneurons and in agreement with earlier physiological results, they influence the protraction of the tongue. The second largest number of close appositions was provided by the hypoglossal and second cervical spinal afferents and they were located mostly on the proximal and middle parts of the dendrites of retractor motoneurons. Due to their small number and distal location, the trigeminal and vestibular terminals seem to have minor effects on direct activation of the hypoglossal motoneurons. We concluded that direct contacts between primary afferent terminals and hypoglossal motoneurons provide one of the possible morphological substrates of very quick feedback and feedforward modulation of the motor program during various stages of prey-catching behavior.


Neuroscience Letters | 2015

Molecular composition and expression pattern of the extracellular matrix in a mossy fiber-generating precerebellar nucleus of rat, the prepositus hypoglossi

Botond Gaál; Szilvia Kecskes; Clara Matesz; András Birinyi; Andrea Hunyadi; Éva Rácz

The prepositus hypoglossi nucleus (PHN) is a mossy fiber-generating precerebellar nucleus of the brainstem, regarded as one of the neural integrators of the vestibulo-ocular reflex. The aim of the present work is to reveal the distribution of various molecular components of the extracellular matrix (ECM) in the prepositus hypoglossi nucleus by using histochemical and immunohistochemical methods. Our most characteristic finding was the accumulation of the ECM as perineuronal net (PNN) and axonal coat and we detected conspicuous differences between the magnocellular (PHNm) and parvocellular (PHNp) divisions of the PHN. PNNs were well developed in the PHNm, whereas the pericellular positivity was almost absent in the PHNp, here a diffuse ECM was observed. In the PHNm the perineuronal net explored the most intense staining with the aggrecan, and tenascin-R antibodies followed by the hyaluronan, then least with reactions for chondroitin sulfate-based proteoglycan components and HAPLN1 link protein reactions, but PNNs were not observed with the versican, neurocan, and brevican staining. We hypothesized that the difference in the ECM organization of the two subnuclei is associated with their different connections, cytoarchitecture, physiological properties and with their different functions in the vestibular system.


Neural Regeneration Research | 2015

Modification of tenascin-R expression following unilateral labyrinthectomy in rats indicates its possible role in neural plasticity of the vestibular neural circuit

Botond Gaál; Einar Örn Jóhannesson; Amit Dattani; Ágnes Magyar; Ildikó Wéber; Clara Matesz

We have previously found that unilateral labyrinthectomy is accompanied by modification of hyaluronan and chondroitin sulfate proteoglycan staining in the lateral vestibular nucleus of rats and the time course of subsequent reorganization of extracellular matrix assembly correlates to the restoration of impaired vestibular function. The tenascin-R has repelling effect on pathfinding during axonal growth/regrowth, and thus inhibits neural circuit repair. By using immunohistochemical method, we studied the modification of tenascin-R expression in the superior, medial, lateral, and descending vestibular nuclei of the rat following unilateral labyrinthectomy. On postoperative day 1, tenascin-R reaction in the perineuronal nets disappeared on the side of labyrinthectomy in the superior, lateral, medial, and rostral part of the descending vestibular nuclei. On survival day 3, the staining intensity of tenascin-R reaction in perineuronal nets recovered on the operated side of the medial vestibular nucleus, whereas it was restored by the time of postoperative day 7 in the superior, lateral and rostral part of the descending vestibular nuclei. The staining intensity of tenascin-R reaction remained unchanged in the caudal part of the descending vestibular nucleus bilaterally. Regional differences in the modification of tenascin-R expression presented here may be associated with different roles of individual vestibular nuclei in the compensatory processes. The decreased expression of the tenascin-R may suggest the extracellular facilitation of plastic modifications in the vestibular neural circuit after lesion of the labyrinthine receptors.


Neuroscience | 2018

Distribution of the extracellular matrix in the pararubral area of the rat

Dóra Szarvas; Botond Gaál; Clara Matesz; Éva Rácz

Previously we described similarities and differences in the organization and molecular composition of an aggrecan based extracellular matrix (ECM) in three precerebellar nuclei, the inferior olive, the prepositus hypoglossi nucleus and the red nucleus of the rat associated with their specific cytoarchitecture, connection and function in the vestibular system. The aim of present study is to map the ECM pattern in a mesencephalic precerebellar nucleus, the pararubral area, which has a unique function among the precerebellar nuclei with its retinal connection and involvement in the circadian rhythm regulation. Using histochemistry and immunohistochemistry we have described for the first time the presence of major ECM components, the hyaluronan, aggrecan, versican, neurocan, brevican, tenascin-R (TN-R), and the HAPLN1 link protein in the pararubral area. The most common form of the aggrecan based ECM was the diffuse network in the neuropil, but each type of the condensed forms was also recognizable. Characteristic perineuronal nets (PNNs) were only recognizable with Wisteria floribunda agglutinin (WFA) and aggrecan staining around some of the medium-sized neurons, whereas the small cells were rarely surrounded by a weakly stained PNNs. The moderate expression of key molecules of PNN, the hyaluronan (HA) and HAPLN1 suggests that the lesser stability of ECM assembly around the pararubral neurons may allow quicker response to the modified neuronal activity and contributes to the high level of plasticity in the vestibular system.

Collaboration


Dive into the Botond Gaál's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Éva Rácz

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Deak

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge