Boualem Khouider
University of Victoria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Boualem Khouider.
Journal of the Atmospheric Sciences | 2006
Boualem Khouider; Andrew J. Majda
Abstract Recent observational analysis reveals the central role of three multicloud types, congestus, stratiform, and deep convective cumulus clouds, in the dynamics of large-scale convectively coupled Kelvin waves, westward-propagating two-day waves, and the Madden–Julian oscillation. A systematic model convective parameterization highlighting the dynamic role of the three cloud types is developed here through two baroclinic modes of vertical structure: a deep convective heating mode and a second mode with low-level heating and cooling corresponding respectively to congestus and stratiform clouds. A systematic moisture equation is developed where the lower troposphere moisture increases through detrainment of shallow cumulus clouds, evaporation of stratiform rain, and moisture convergence and decreases through deep convective precipitation. A nonlinear switch is developed that favors either deep or congestus convection depending on the relative dryness of the troposphere; in particular, a dry troposphere...
Philosophical Transactions of the Royal Society A | 2008
Andrew J. Majda; Christian Franzke; Boualem Khouider
Systematic strategies from applied mathematics for stochastic modelling in climate are reviewed here. One of the topics discussed is the stochastic modelling of mid-latitude low-frequency variability through a few teleconnection patterns, including the central role and physical mechanisms responsible for multiplicative noise. A new low-dimensional stochastic model is developed here, which mimics key features of atmospheric general circulation models, to test the fidelity of stochastic mode reduction procedures. The second topic discussed here is the systematic design of stochastic lattice models to capture irregular and highly intermittent features that are not resolved by a deterministic parametrization. A recent applied mathematics design principle for stochastic column modelling with intermittency is illustrated in an idealized setting for deep tropical convection; the practical effect of this stochastic model in both slowing down convectively coupled waves and increasing their fluctuations is presented here.
Journal of the Atmospheric Sciences | 2007
Boualem Khouider; Andrew J. Majda
Observations in the Tropics point to the important role of three cloud types, congestus, stratiform, and deep convective clouds, besides ubiquitous shallow boundary layer clouds for both the climatology and large-scale organized anomalies such as convectively coupled Kelvin waves, two-day waves, and the Madden–Julian oscillation. Recently, the authors have developed a systematic model convective parameterization highlighting the dynamic role of the three cloud types through two baroclinic modes of vertical structure: a deep convective heating mode and a second mode with lower troposphere heating and cooling corresponding respectively to congestus and stratiform clouds. The model includes both a systematic moisture equation where the lower troposphere moisture increases through detrainment of shallow cumulus clouds, evaporation of stratiform rain, and moisture convergence and decreases through deep convective precipitation and also a nonlinear switch that favors either deep or congestus convection depending on whether the lower middle troposphere is moist or dry. Here these model convective parameterizations are applied to a 40 000-km periodic equatorial ring without rotation, with a background sea surface temperature (SST) gradient and realistic radiative cooling mimicking a tropical warm pool. Both the emerging “Walker cell” climatology and the convectively coupled wave fluctuations are analyzed here while various parameters in the model are varied. The model exhibits weak congestus moisture coupled waves outside the warm pool in a turbulent bath that intermittently amplify in the warm pool generating convectively coupled moist gravity wave trains propagating at speeds ranging from 15 to 20 m s 1 over the warm pool, while retaining a classical Walker cell in the mean climatology. The envelope of the deep convective events in these convectively coupled wave trains often exhibits large-scale organization with a slower propagation speed of 3–5 m s 1 over the warm pool and adjacent region. Occasional much rarer intermittent deep convection also occurs outside the warm pool. The realistic parameter regimes in the multicloud model are identified as those with linearized growth rates for large scale instabilities roughly in the range of 0.5 K day 1 .
Proceedings of the National Academy of Sciences of the United States of America | 2002
Andrew J. Majda; Boualem Khouider
A new way to parametrize certain aspects of tropical convection through stochastic and mesoscopic models is developed here. The technical idea is to adapt tools from statistical physics and materials science to model important unresolved features of tropical convection. This new strategy consists of modeling the unresolved effects of convective inhibition in a coarse mesh mesoscopic parametrization through a “heat bath” model involving a stochastic spin flip model with very natural interaction rules for convective inhibition combined with a suitable external potential defined by the coarse mesh values. In turn, the values of the order parameter from this heat bath alter the vertical mass flux in regions of deep convection. Both stochastic and systematic deterministic mesoscopic parametrizations are developed here. The deterministic mesoscopic models derived in this fashion exhibit new phenomena such as multiple radiative equilibria in suitable parameter regimes. The simplest first numerical experiments reported here with the mesoscopic deterministic parametrization qualitatively reproduce several key features of the observational record regarding convectively coupled tropical waves. The systematic stochastic modeling strategy proposed here could also be very useful for capturing other features of tropical convection such as those involving cloud radiation feedbacks.
Journal of the Atmospheric Sciences | 2011
Boualem Khouider; Amik St-Cyr; Andrew J. Majda; Joseph Tribbia
Abstract The adequate representation of the dominant intraseasonal and synoptic-scale variability in the tropics, characterized by the Madden–Julian oscillation (MJO) and convectively coupled waves, is still problematic in current operational general circulation models (GCMs). Here results are presented using the next-generation NCAR GCM—the High-Order Methods Modeling Environment (HOMME)—as a dry dynamical core at a coarse resolution of about 167 km, coupled to a simple multicloud parameterization. The coupling is performed through a judicious choice of heating vertical profiles for the three cloud types—congestus, deep, and stratiform—that characterize organized tropical convection. Important control parameters that affect the types of waves that emerge are the background vertical gradient of the moisture and the stratiform fraction in the multicloud parameterization, which set the strength of large-scale moisture convergence and unsaturated downdrafts in the wake of deep convection, respectively. Three...
Journal of the Atmospheric Sciences | 2008
Boualem Khouider; Andrew J. Majda
Abstract Despite the recent advances in supercomputing, the current general circulation models (GCMs) poorly represent the large-scale variability associated with tropical convection. Multicloud model convective parameterizations based on three cloud types (congestus, deep, and stratiform), introduced recently by the authors, have been revealed to be very useful in representing key features of organized convection and convectively coupled waves. Here a new systematic version of the multicloud models is developed with separate upper- and lower-troposphere basis functions for the congestus and stratiform clouds. It naturally leads to a new convective closure for the multicloud models enhancing the congestus heating in order to better pinpoint the congestus preconditioning and moistening mechanisms. The models are studied here for flows above the equator without rotation effects. First, the new model results consist of the usual synoptic-scale convectively coupled moist gravity wave packets moving at 15–20 m...
Proceedings of the National Academy of Sciences of the United States of America | 2003
Boualem Khouider; Andrew J. Majda; Markos A. Katsoulakis
Prototype coarse-grained stochastic parametrizations for the interaction with unresolved features of tropical convection are developed here. These coarse-grained stochastic parametrizations involve systematically derived birth/death processes with low computational overhead that allow for direct interaction of the coarse-grained dynamical variables with the smaller-scale unresolved fluctuations. It is established here for an idealized prototype climate scenario that, in suitable regimes, these coarse-grained stochastic parametrizations can significantly impact the climatology as well as strongly increase the wave fluctuations about an idealized climatology.
Journal of the Atmospheric Sciences | 2004
Andrew J. Majda; Boualem Khouider; George N. Kiladis; Katherine H. Straub; Michael G. Shefter
Abstract Recent observational analysis of both individual realizations and statistical ensembles identifies moist convectively coupled Kelvin waves in the Tropics with supercluster envelopes of convection. This observational analysis elucidates several key features of these waves including their propagation speed of roughly 15 m s−1 and many aspects of their dynamical structure. This structure includes anomalously cold temperatures in the lower troposphere and warm temperatures in the upper troposphere (below 250 hPa) within and sometimes leading the heating region and strong updrafts in the wave, and an upward and westward tilting structure with height below roughly 250 hPa. Other key features in the wave are that anomalous increases in convective available potential energy (CAPE) and surface precipitation lead the wave while the trailing part of the supercluster is dominated by stratiform precipitation. The main result in this paper is the development of a simple model convective parameterization with n...
Journal of the Atmospheric Sciences | 2012
Yevgeniy Frenkel; Andrew J. Majda; Boualem Khouider
AbstractDespite recent advances in supercomputing, current general circulation models (GCMs) poorly represent the variability associated with organized tropical convection. A stochastic multicloud convective parameterization based on three cloud types (congestus, deep, and stratiform), introduced recently by Khouider, Biello, and Majda in the context of a single column model, is used here to study flows above the equator without rotation effects. The stochastic model dramatically improves the variability of tropical convection compared to the conventional moderate- and coarse-resolution paradigm GCM parameterizations. This increase in variability comes from intermittent coherent structures such as synoptic and mesoscale convective systems, analogs of squall lines and convectively coupled waves seen in nature whose representation is improved by the stochastic parameterization. Furthermore, simulations with a sea surface temperature (SST) gradient yield realistic mean Walker cell circulation with plausible ...
Journal of the Atmospheric Sciences | 2010
Michael L. Waite; Boualem Khouider
Abstract The role of environmental moisture in the deepening of cumulus convection is investigated by means of cloud-resolving numerical experiments. Under idealized conditions of uniform SST and specified radiative cooling, the evolution of trade wind cumulus into congestus clouds, and ultimately deep convection, is simulated and analyzed. The results exhibit a tight coupling between environmental moisture and cloud depth, both of which increase over the course of the simulations. Moistening in the lower troposphere is shown to result from the detrainment of water vapor from congestus clouds, and the strength of this tendency is quantified. Moistening of the lower troposphere reduces the dilution of cloud buoyancy by dry-air entrainment, and the relationship between this effect and increasing cloud depth is examined. The authors confirm that the mixing of water vapor by subgrid-scale turbulence has a significant impact on cloud depth, while the mixing of sensible heat has a negligible effect. By contrast...