Bouchra Nechad
Royal Belgian Institute of Natural Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bouchra Nechad.
Optics Express | 2009
Griet Neukermans; Kevin Ruddick; Emilien Bernard; Didier Ramon; Bouchra Nechad; Pierre-Yves Deschamps
Geostationary ocean colour sensors have not yet been launched into space, but are under consideration by a number of space agencies. This study provides a proof of concept for mapping of Total Suspended Matter (TSM) in turbid coastal waters from geostationary platforms with the existing SEVIRI (Spinning Enhanced Visible and InfraRed Imager) meteorological sensor on the METEOSAT Second Generation platform. Data are available in near real time every 15 minutes. SEVIRI lacks sufficient bands for chlorophyll remote sensing but its spectral resolution is sufficient for quantification of Total Suspended Matter (TSM) in turbid waters, using a single broad red band, combined with a suitable near infrared band. A test data set for mapping of TSM in the Southern North Sea was obtained covering 35 consecutive days from June 28 until July 31 2006. Atmospheric correction of SEVIRI images includes corrections for Rayleigh and aerosol scattering, absorption by atmospheric gases and atmospheric transmittances. The aerosol correction uses assumptions on the ratio of marine reflectances and aerosol reflectances in the red and near-infrared bands. A single band TSM retrieval algorithm, calibrated by non-linear regression of seaborne measurements of TSM and marine reflectance was applied. The effect of the above assumptions on the uncertainty of the marine reflectance and TSM products was analysed. Results show that (1) mapping of TSM in the Southern North Sea is feasible with SEVIRI for turbid waters, though with considerable uncertainties in clearer waters, (2) TSM maps are well correlated with TSM maps obtained from MODIS AQUA and (3) during cloud-free days, high frequency dynamics of TSM are detected.
Proceedings of SPIE, the International Society for Optical Engineering | 2009
Bouchra Nechad; Kevin Ruddick; Griet Neukermans
Turbidity, as defined in the standard ISO7027, is a parameter that is routinely measured in many national and regional water quality monitoring programmes. The definition of turbidity according to ISO and as related to satellite data products is discussed. While satellite data products are beginning to become available for the closely related parameter, Total Suspended Matter (TSM), the direct estimation of turbidity as a satellite data product has not yet been addressed. In situ measurements of TSM and of turbidity, obtained in the Southern North Sea (SNS), show high correlation (correlation coefficient of 98.6%). A generic multisensor algorithm for TSM as function of reflectance has been previously developed. The methodology is extended here to the estimation of turbidity from water-leaving reflectance. A set of 49 seaborne measurements of reflectance in the spectral range 600-850nm and turbidity in the SNS are used to calibrate the algorithm. The algorithm is also calibrated for the specific bands of MERIS. Validation of these models is carried out using an independent set of seaborne measurements of turbidity and reflectance and shows low relative errors in turbidity retrieval at 681nm (less than 35%). This wavelength is recommended, provided no significant fluorescence affects this range.
Remote Sensing | 2016
Anouck Ody; David Doxaran; Quinten Vanhellemont; Bouchra Nechad; Stéfani Novoa; Gaël Many; François Bourrin; Romaric Verney; Ivane Pairaud; Bernard Gentili
Ocean color satellite sensors are powerful tools to study and monitor the dynamics of suspended particulate matter (SPM) discharged by rivers in coastal waters. In this study, we test the capabilities of Landsat-8/Operational Land Imager (OLI), AQUA&TERRA/Moderate Resolution Imaging Spectroradiometer (MODIS) and MSG-3/Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensors in terms of spectral, spatial and temporal resolutions to (i) estimate the seawater reflectance signal and then SPM concentrations and (ii) monitor the dynamics of SPM in the Rhone River plume characterized by moderately turbid surface waters in a micro-tidal sea. Consistent remote-sensing reflectance (Rrs) values are retrieved in the red spectral bands of these four satellite sensors (median relative difference less than ~16% in turbid waters). By applying a regional algorithm developed from in situ data, these Rrs are used to estimate SPM concentrations in the Rhone river plume. The spatial resolution of OLI provides a detailed mapping of the SPM concentration from the downstream part of the river itself to the plume offshore limits with well defined small-scale turbidity features. Despite the low temporal resolution of OLI, this should allow to better understand the transport of terrestrial particles from rivers to the coastal ocean. These details are partly lost using MODIS coarser resolutions data but SPM concentration estimations are consistent, with an accuracy of about 1 to 3 g·m−3 in the river mouth and plume for spatial resolutions from 250 m to 1 km. The MODIS temporal resolution (2 images per day) allows to capture the daily to monthly dynamics of the river plume. However, despite its micro-tidal environment, the Rhone River plume shows significant short-term (hourly) variations, mainly controlled by wind and regional circulation, that MODIS temporal resolution failed to capture. On the contrary, the high temporal resolution of SEVIRI makes it a powerful tool to study this hourly river plume dynamics. However, its coarse resolution prevents the monitoring of SPM concentration variations in the river mouth where SPM concentration variability can reach 20 g·m−3 inside the SEVIRI pixel. Its spatial resolution is nevertheless sufficient to reproduce the plume shape and retrieve SPM concentrations in a valid range, taking into account an underestimation of about 15%–20% based on comparisons with other sensors and in situ data. Finally, the capabilities, advantages and limits of these satellite sensors are discussed in the light of the spatial and temporal resolution improvements provided by the new and future generation of ocean color sensors onboard the Sentinel-2, Sentinel-3 and Meteosat Third Generation (MTG) satellite platforms.
Remote sensing of the European Seas | 2008
Kevin Ruddick; Geneviève Lacroix; Christiane Lancelot; Bouchra Nechad; Young-Je Park; S.W.M. Peters; B. van Mol
Optical remote sensing in the North Sea is reviewed with a focus on applications supporting environmental management. Optical remote sensing provides estimates of Chlorophyll a, total suspended matter and diffuse attenuation coefficient and related parameters. These are used for harmful algal bloom detection, eutrophication assessment, ecosystem and sediment transport modeling, and estimation of air-sea carbon fluxes.
Optics Express | 2016
David Doxaran; Edouard Leymarie; Bouchra Nechad; Ana I. Dogliotti; Kevin Ruddick; Pierre Gernez; Els Knaeps
Monte Carlo simulations are used to compute the uncertainty associated to light backscattering measurements in turbid waters using the ECO-BB (WET Labs) and Hydroscat (HOBI Labs) scattering sensors. ECO-BB measurements provide an accurate estimate of the particulate volume scattering coefficient after correction for absorption along the short instrument pathlength. For Hydroscat measurements, because of a longer photon pathlength, both absorption and scattering effects must be corrected for. As the standard (sigma) correction potentially leads to large errors, an improved correction method is developed then validated using field inherent and apparent optical measurements carried out in turbid estuarine waters. Conclusions are also drawn to guide development of future short pathlength backscattering sensors for turbid waters.
Proceedings of SPIE, the International Society for Optical Engineering | 2010
Bouchra Nechad; Kevin Ruddick
Estimation of the underwater attenuation of light is important to ecosystem modellers, who require information on Photosynthetically Available Radiation (PAR), and on the euphotic depth for calculation of primary production. Characterisation of these processes can be achieved by determining the diffuse attenuation coefficient of PAR, KPAR . A review of bio-optical models of the spectral diffuse attenuation coefficient for downwelling irradiance, Kd , is presented and stresses the necessity for a better knowledge and parameterization of these coefficients. In the second part of this work, radiative transfer simulations were carried out to model KdZ1% the spectral diffuse attenuation of downwelling irradiance averaged over the euphotic depth Z1% (depth where the downwelling irradiance is 1% of its surface value). This model takes into account the effects of varying sun zenith angle and cloud cover and needs absorption and backscattering coefficients (the inherent optical properties, IOPs) as input. It provides average and maximum relative errors of 1% and 5% respectively, for sun zenith angles [0°-50°] and of 1.7% and 12% respectively at higher sun zenith angles. A relationship was established between KdZ1% at a single wavelength (590nm) and KPAR at ZPAR1% (where PAR is 1% of its value at the surface) which allows for a direct expression of KPARZPAR1% in terms of inherent optical properties, sun angle and cloudiness. This model provides estimates of KPAR within 25% (respectively 40%) relative errors respectively with a mean relative error less than 7% (respectively 9%) for sun zenith angles ranging from 0° to 50° (respectively higher than 50°). A similar method is applied to derive a model for the diffuse attenuation of photosynthetically usable radiation, KPURZPUR1% , with similar performance.
Proceedings in Marine Science | 2007
D. Van den Eynde; Bouchra Nechad; M. Fettweis; F. Francken
Suspended Particulate Matter (SPM) surface concentration maps in the Belgian/Dutch coastal zone are retrieved from SeaWiFS images and are corrected using in situ measurements to obtain depth-averaged SPM concentration maps. A spatial correlation analysis of the derived maps shows that the area could be divided into three subregions where the correlations between the SPM concentrations are higher than 70%. Examination of in situ SPM concentration measurements reveals that during about 1/3 of the tidal cycle the SPM concentration is significantly higher than during the rest of the cycle. Strong vertical gradients are sometimes observed during periods with increased SPM concentration. A satellite image taken during such a period would underestimate the depth-averaged SPM concentration. Images taken during other periods better represents (except for some small corrections) the averaged SPM concentration. The methodology for obtaining the depth-averaged SPM concentration maps from surface SPM distributions derived from SeaWiFS images is positive but can be further improved.
Proceedings of the Second International Workshop on the Multitemp 2003 | 2004
Bouchra Nechad; D. Van den Eynde; M. Fettweis; F. Francken
Suspended particulate matter concentration (SPM) maps at water-surface were retrieved from 172 SeaWiFS images using the MUMM turbid water extension to the SEADAS4.4 software and a regionally calibrated hydro-optical model. Examination of surface-SPM maps and the depth-averaged SPM derived from a 2D-hydrodynamic and sediment transport model over the BCZ shows interesting similarities. The effect of the neap-spring tide cycle on the satellite-derived SPM distribution is compared to the significant impact of this factor on modeled SPM distributions. Classification of the Belgian waters is carried out using the time-series of SeaWiFS-derived SPM maps and is explained in the light of the SPM transport modelling knowledge. This is preliminary step in this project to provide boundary conditions and initial data of SPM distribution to the coupled model.
Earth System Science Data Discussions | 2018
Els Knaeps; David Doxaran; Ana I. Dogliotti; Bouchra Nechad; Kevin Ruddick; Dries Raymaekers; Sindy Sterckx
The SeaSWIR dataset consists of 137 ASD (Analytical Spectral Devices, Inc.) marine reflectances, 137 total suspended matter (TSM) measurements and 97 turbidity measurements gathered at three turbid estuarine sites (Gironde, La Plata, Scheldt). The dataset is valuable because of the high-quality measurements of the marine reflectance in the Short Wave InfraRed I region (SWIR-I: 1000–1200 nm) and SWIR-II (1200–1300 nm) and because of the wide range of TSM concentrations from 48 up to 1400 mgL−1. The ASD measurements were gathered using a detailed measurement protocol and were subjected to a strict quality control. The SeaSWIR marine reflectance is characterized by low reflectance at short wavelengths (< 450 nm), peak reflectance values between 600 and 720 nm and significant contributions in the near-infrared (NIR) and SWIR-I parts of the spectrum. Comparison of the ASD water reflectance with simultaneously acquired reflectance from a three-radiometer system revealed a correlation of 0.98 for short wavelengths (412, 490 and 555 nm) and 0.93 for long wavelengths (686, 780 and 865 nm). The relationship between TSM and turbidity (for all sites) is linear, with a correlation coefficient of 0.96. The SeaSWIR dataset has been made publicly available (https://doi.org/10.1594/PANGAEA.886287).
Remote Sensing of Environment | 2015
Ana I. Dogliotti; Kevin Ruddick; Bouchra Nechad; David Doxaran; Els Knaeps
Collaboration
Dive into the Bouchra Nechad's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs