Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Boudewijn van der Sanden is active.

Publication


Featured researches published by Boudewijn van der Sanden.


Physics in Medicine and Biology | 2008

Characterization and quantification of cerebral edema induced by synchrotron x-ray microbeam radiation therapy.

Raphaël Serduc; Yohan van de Looij; Gilles Francony; Olivier Verdonck; Boudewijn van der Sanden; Jean A. Laissue; Régine Farion; Elke Bräuer-Krisch; Erik Albert Siegbahn; Alberto Bravin; Yolanda Prezado; Christoph Segebarth; Chantal Rémy; Hana Lahrech

Cerebral edema is one of the main acute complications arising after irradiation of brain tumors. Microbeam radiation therapy (MRT), an innovative experimental radiotherapy technique using spatially fractionated synchrotron x-rays, has been shown to spare radiosensitive tissues such as mammal brains. The aim of this study was to determine if cerebral edema occurs after MRT using diffusion-weighted MRI and microgravimetry. Prone Swiss nude mices heads were positioned horizontally in the synchrotron x-ray beam and the upper part of the left hemisphere was irradiated in the antero-posterior direction by an array of 18 planar microbeams (25 mm wide, on-center spacing 211 mm, height 4 mm, entrance dose 312 Gy or 1000 Gy). An apparent diffusion coefficient (ADC) was measured at 7 T 1, 7, 14, 21 and 28 days after irradiation. Eventually, the cerebral water content (CWC) was determined by microgravimetry. The ADC and CWC in the irradiated (312 Gy or 1000 Gy) and in the contralateral non-irradiated hemispheres were not significantly different at all measurement times, with two exceptions: (1) a 9% ADC decrease (p < 0.05) was observed in the irradiated cortex 1 day after exposure to 312 Gy, (2) a 0.7% increase (p < 0.05) in the CWC was measured in the irradiated hemispheres 1 day after exposure to 1000 Gy. The results demonstrate the presence of a minor and transient cellular edema (ADC decrease) at 1 day after a 312 Gy exposure, without a significant CWC increase. One day after a 1000 Gy exposure, the CWC increased, while the ADC remained unchanged and may reflect the simultaneous presence of cellular and vasogenic edema. Both types of edema disappear within a week after microbeam exposure which may confirm the normal tissue sparing effect of MRT.


Physics in Medicine and Biology | 2008

Brain tumor vessel response to synchrotron microbeam radiation therapy: a short-term in vivo study

Raphaël Serduc; Thomas Christen; Jean A. Laissue; Régine Farion; Audrey Bouchet; Boudewijn van der Sanden; Christoph Segebarth; Elke Bräuer-Krisch; Géraldine Le Duc; Alberto Bravin; Chantal Rémy; Emmanuel L. Barbier

The aim of this work focuses on the description of the short-term response of a 9L brain tumor model and its vasculature to microbeam radiation therapy (MRT) using magnetic resonance imaging (MRI). Rat 9L gliosarcomas implanted in nude mice brains were irradiated by MRT 13 days after tumor inoculation using two orthogonal arrays of equally spaced 28 planar microbeams (25 microm width, 211 microm spacing and dose 500 Gy). At 1, 7 and 14 days after MRT, apparent diffusion coefficient, blood volume and vessel size index were mapped by MRI. Mean survival time after tumor inoculation increased significantly between MRT-treated and untreated groups (23 and 28 days respectively, log-rank test, p < 0.0001). A significant increase of apparent diffusion coefficient was observed 24 h after MRT in irradiated tumors versus non-irradiated ones. In the untreated group, both tumor size and vessel size index increased significantly (from 7.6 +/- 2.2 to 19.2 +/- 4.0 mm(2) and +23%, respectively) between the 14th and the 21st day after tumor cell inoculation. During the same period, in the MRT-treated group, no difference in tumor size was observed. The vessel size index measured in the MRT-treated group increased significantly (+26%) between 14 and 28 days of tumor growth. We did not observe the significant difference in blood volume between the MRT-treated and untreated groups. MRT slows 9L tumor growth in a mouse brain but MRI results suggest that the increase in survival time after our MRT approach may be rather due to a cytoreduction than to early direct effects of ionizing radiation on tumor vessels. These results suggest that MRT parameters need to be optimized to further damage tumor vessels.


ACS Nano | 2015

Long-term in vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection.

Lucie Sancey; Shady Kotb; Charles Truillet; Florence Appaix; Arthur Marais; Eloise Thomas; Boudewijn van der Sanden; Jean-Philippe Klein; Blandine Laurent; Michèle Cottier; Rodolphe Antoine; Philippe Dugourd; G. Panczer; François Lux; Pascal Perriat; Vincent Motto-Ros; Olivier Tillement

We previously reported the synthesis of gadolinium-based nanoparticles (NPs) denoted AGuIX (activation and guiding of irradiation by X-ray) NPs and demonstrated their potential as an MRI contrast agent and their efficacy as radiosensitizing particles during X-ray cancer treatment. Here we focus on the elimination kinetics of AGuIX NPs from the subcellular to whole-organ scale using original and complementary methods such as laser-induced breakdown spectroscopy (LIBS), intravital two-photon microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), transmission electron microscopy (TEM), and electrospray ionization mass spectrometry (ESI-MS). This combination of techniques allows the exact mechanism of AGuIX NPs elimination to be elucidated, including their retention in proximal tubules and their excretion as degraded or native NPs. Finally, we demonstrated that systemic AGuIX NP administration induced moderate and transient effects on renal function. These results provide useful and promising preclinical information concerning the safety of theranostic AGuIX NPs.


PLOS ONE | 2012

Specific In Vivo Staining of Astrocytes in the Whole Brain after Intravenous Injection of Sulforhodamine Dyes

Florence Appaix; Sabine Girod; Sylvie Boisseau; Johannes Römer; Jean-Claude Vial; Mireille Albrieux; Mathieu Maurin; Antoine Depaulis; Isabelle Guillemain; Boudewijn van der Sanden

Fluorescent staining of astrocytes without damaging or interfering with normal brain functions is essential for intravital microscopy studies. Current methods involved either transgenic mice or local intracerebral injection of sulforhodamine 101. Transgenic rat models rarely exist, and in mice, a backcross with GFAP transgenic mice may be difficult. Local injections of fluorescent dyes are invasive. Here, we propose a non-invasive, specific and ubiquitous method to stain astrocytes in vivo. This method is based on iv injection of sulforhodamine dyes and is applicable on rats and mice from postnatal age to adulthood. The astrocytes staining obtained after iv injection was maintained for nearly half a day and showed no adverse reaction on astrocytic calcium signals or electroencephalographic recordings in vivo. The high contrast of the staining facilitates the image processing and allows to quantify 3D morphological parameters of the astrocytes and to characterize their network. Our method may become a reference for in vivo staining of the whole astrocytes population in animal models of neurological disorders.


Journal of Biomedical Optics | 2011

Deep in vivo two-photon imaging of blood vessels with a new dye encapsulated in pluronic nanomicelles

Mathieu Maurin; Olivier Stéphan; Jean-Claude Vial; Seth R. Marder; Boudewijn van der Sanden

Our purpose is to test if Pluronic® fluorescent nanomicelles can be used for in vivo two-photon imaging of both the normal and the tumor vasculature. The nanomicelles were obtained after encapsulating a hydrophobic two-photon dye: di-stryl benzene derivative, in Pluronic block copolymers. Their performance with respect to imaging depth, blood plasma staining, and diffusion across the tumor vascular endothelium is compared to a classic blood pool dye Rhodamin B dextran (70 kDa) using two-photon microscopy. Pluronic nanomicelles show, like Rhodamin B dextran, a homogeneous blood plasma staining for at least 1 h after intravenous injection. Their two-photon imaging depth is similar in normal mouse brain, using 10 times less injected mass. In contrast with Rhodamin B dextran, no extravasation is observed in leaky tumor vessels due to their large size: 20-100 nm. In conclusion, Pluronic nanomicelles can be used as a blood pool dye, even in leaky tumor vessels. The use of Pluronic block copolymers is a valuable approach for encapsulating two-photon fluorescent dyes that are hydrophobic and not suitable for intravenous injection.


Journal of Cerebral Blood Flow and Metabolism | 2007

A direct method for measuring mouse capillary cortical blood volume using multiphoton laser scanning microscopy

Pascale Vérant; Raphaël Serduc; Boudewijn van der Sanden; Chantal Rémy; Jean-Claude Vial

Knowledge of the blood volume per unit volume of brain tissue is important for understanding brain function in health and disease. We describe a direct method using two-photon laser scanning microscopy to obtain in vivo the local capillary blood volume in the cortex of anesthetized mouse. We infused fluorescent dyes in the circulating blood and imaged the blood vessels, including the capillaries, to a depth of 600 μm below the dura at the brain surface. Capillary cortical blood volume (CCBV) was calculated without any form recognition and segmentation, by normalizing the total fluorescence measured at each depth and integrating the collected intensities all over the stack. Theoretical justifications are presented and numerical simulations were performed to validate this method which was weakly sensitive to background noise. Then, CCBV had been estimated on seven healthy mice between 2% ± 0.3% and 2.4% ± 0.4%. We showed that this measure of CCBV is reproductible and that this method is highly sensitive to the explored zones in the cortex (vessel density and size). This method, which dispenses with form recognition, is rapid and would allow to study in vivo temporal and highly resolute spatial variations of CCBV under different conditions or stimulations.


Acta Biomaterialia | 2014

Thermoresponsive hyaluronic acid nanogels as hydrophobic drug carrier to macrophages

Talitha Fernandes Stefanello; Anna Szarpak-Jankowska; Florence Appaix; Benoit Louage; Lauriane Hamard; Bruno G. De Geest; Boudewijn van der Sanden; Celso Vataru Nakamura; Rachel Auzély-Velty

Delivery systems for macrophages are particularly attractive since these phagocytic cells play a important role in immunological and inflammatory responses, also acting as host cells for microorganisms that are involved in deadly infectious diseases, such as leishmaniasis. Hyaluronic acid (HA) is specifically recognized by macrophages that are known to express HA receptors. Therefore, in this study, we focused on HA-based nanogels as drug carriers for these cells. The drug delivery was validated in an in vivo study on mice using intravital two-photon laser scanning microscopy. HA derivatives were modified with a biocompatible oligo(ethylene glycol)-based thermoresponsive polymer to form nanogels. These HA conjugates were readily prepared by varying the molar mass of initial HA and the degree of substitution via radical-mediated thiol-ene chemistry in aqueous solution. The derivatives were shown to self-assemble into spherical gel particles with diameters ranging from 150 to 214 nm above 37 °C. A poorly water-soluble two-photon dye was successfully loaded into the nanogels during this self-assembly process. In vitro cellular uptake tests using a RAW 264.7 murine macrophage cell line showed successful intracellular delivery of the hydrophobic dye. After intravenous injection in mice, the nanogels circulated freely in the blood but were rapidly phagocytized within 13 min by circulating macrophages and stored in the liver and spleen, as observed by two-photon microscopy. Benefit can be thus expected in using such a delivery system for the liver and spleen macrophage-associated diseases.


International Journal of Radiation Oncology Biology Physics | 2010

Tolerance of Arteries to Microplanar X-Ray Beams

Boudewijn van der Sanden; Elke Bräuer-Krisch; Erik Albert Siegbahn; Clément Ricard; Jean-Claude Vial; Jean A. Laissue

PURPOSE The purpose is to evaluate effects of a new radiotherapy protocol, microbeam radiation therapy, on the artery wall. In previous studies on animal models, it was shown that capillaries recover well from hectogray doses of X-rays delivered in arrays of narrow (< or = 50 microm) beams with a minimum spacing of 200 microm. Here, short- and long-term effects of comparable microplanar beam configurations on the saphenous artery of the mouse hind leg were analyzed in situ by use of nonlinear optics and compared with histopathologic findings. METHODS AND MATERIALS The left hind leg of normal mice including the saphenous artery was irradiated by an array of 26 microbeams of synchrotron X-rays (50 microm wide, spaced 400 microm on center) with peak entrance doses of 312 Gy and 2,000 Gy. RESULTS The artery remained patent, but narrow arterial smooth muscle cell layer segments that were in the microplanar beam paths became atrophic and fibrotic in a dose-dependent pattern. The wide tunica media segments between those paths hypertrophied, as observed in situ by two-photon microscopy and histopathologically. CONCLUSIONS Clinical risks of long-delayed disruption or occlusion of nontargeted arteries from microbeam radiation therapy will prove less than corresponding risks from broad-beam radiosurgery, especially if peak doses are kept below 3 hectograys.


World Journal of Stem Cells | 2014

Brain mesenchymal stem cells: The other stem cells of the brain?

Florence Appaix; Marie-France Nissou; Boudewijn van der Sanden; Matthieu Dreyfus; François Berger; Jean-Paul Issartel; Didier Wion

Multipotent mesenchymal stromal cells (MSC), have the potential to differentiate into cells of the mesenchymal lineage and have non-progenitor functions including immunomodulation. The demonstration that MSCs are perivascular cells found in almost all adult tissues raises fascinating perspectives on their role in tissue maintenance and repair. However, some controversies about the physiological role of the perivascular MSCs residing outside the bone marrow and on their therapeutic potential in regenerative medicine exist. In brain, perivascular MSCs like pericytes and adventitial cells, could constitute another stem cell population distinct to the neural stem cell pool. The demonstration of the neuronal potential of MSCs requires stringent criteria including morphological changes, the demonstration of neural biomarkers expression, electrophysiological recordings, and the absence of cell fusion. The recent finding that brain cancer stem cells can transdifferentiate into pericytes is another facet of the plasticity of these cells. It suggests that the perversion of the stem cell potential of pericytes might play an even unsuspected role in cancer formation and tumor progression.


Nanotechnology | 2009

Fluorescent Pluronic nanodots for in vivo two-photon imaging

Mathieu Maurin; Laeticia Vurth; Jean-Claude Vial; Patrice L. Baldeck; Seth R. Marder; Boudewijn van der Sanden; Olivier Stéphan

We report the synthesis of new nanosized fluorescent probes based on bio-compatible polyethylene-polypropylene glycol (Pluronic) materials. In aqueous solution, mini-emulsification of Pluronic with a high fluorescent di-stryl benzene-modified derivative, exhibiting a two-photon absorption cross section as high as 2500 Goeppert-Mayer units at 800 nm, leads to nanoparticles exhibiting a hydrodynamic radius below 100 nm. We have demonstrated that these new probes with luminescence located in the spectral region of interest for bio-imaging (the yellow part of the visible spectrum) allow deep (500 microm) bio-imaging of the mice brain vasculature. The dose injected during our experiments is ten times lower when compared to the classical commercial rhodamine-B isothicyanate-Dextran system but gives similar results to homogeneous blood plasma staining. The mean fluorescent signal intensity stayed constant during more than 1 h.

Collaboration


Dive into the Boudewijn van der Sanden's collaboration.

Top Co-Authors

Avatar

Jean-Claude Vial

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Chantal Andraud

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Yann Bretonnière

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Elke Bräuer-Krisch

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Szarpak-Jankowska

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Pascale Vérant

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Patrice L. Baldeck

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Rachel Auzély-Velty

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Alberto Bravin

European Synchrotron Radiation Facility

View shared research outputs
Researchain Logo
Decentralizing Knowledge