Bouziane Moumen
University of Poitiers
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bouziane Moumen.
Genome Biology and Evolution | 2014
Julien Thézé; Sébastien Olivier Leclercq; Bouziane Moumen; Richard Cordaux; Clément Gilbert
Recent studies in paleovirology have uncovered myriads of endogenous viral elements (EVEs) integrated in the genome of their eukaryotic hosts. These fragments result from endogenization, that is, integration of the viral genome into the host germline genome followed by vertical inheritance. So far, most studies have used a virus-centered approach, whereby endogenous copies of a particular group of viruses were searched in all available sequenced genomes. Here, we follow a host-centered approach whereby the genome of a given species is comprehensively screened for the presence of EVEs using all available complete viral genomes as queries. Our analyses revealed that 54 EVEs corresponding to 10 different viral lineages belonging to 5 viral families (Bunyaviridae, Circoviridae, Parvoviridae, and Totiviridae) and one viral order (Mononegavirales) became endogenized in the genome of the isopod crustacean Armadillidium vulgare. We show that viral endogenization occurred recurrently during the evolution of isopods and that A. vulgare viral lineages were involved in multiple host switches that took place between widely divergent taxa. Furthermore, 30 A. vulgare EVEs have uninterrupted open reading frames, suggesting they result from recent endogenization of viruses likely to be currently infecting isopod populations. Overall, our work shows that isopods have been and are still infected by a large variety of viruses. It also extends the host range of several families of viruses and brings new insights into their evolution. More generally, our results underline the power of paleovirology in characterizing the viral diversity currently infecting eukaryotic taxa.
PLOS Genetics | 2016
Clément Gilbert; Jean Peccoud; Aurélien Chateigner; Bouziane Moumen; Richard Cordaux; Elisabeth A. Herniou
Many genes of large double-stranded DNA viruses have a cellular origin, suggesting that host-to-virus horizontal transfer (HT) of DNA is recurrent. Yet, the frequency of these transfers has never been assessed in viral populations. Here we used ultra-deep DNA sequencing of 21 baculovirus populations extracted from two moth species to show that a large diversity of moth DNA sequences (n = 86) can integrate into viral genomes during the course of a viral infection. The majority of the 86 different moth DNA sequences are transposable elements (TEs, n = 69) belonging to 10 superfamilies of DNA transposons and three superfamilies of retrotransposons. The remaining 17 sequences are moth sequences of unknown nature. In addition to bona fide DNA transposition, we uncover microhomology-mediated recombination as a mechanism explaining integration of moth sequences into viral genomes. Many sequences integrated multiple times at multiple positions along the viral genome. We detected a total of 27,504 insertions of moth sequences in the 21 viral populations and we calculate that on average, 4.8% of viruses harbor at least one moth sequence in these populations. Despite this substantial proportion, no insertion of moth DNA was maintained in any viral population after 10 successive infection cycles. Hence, there is a constant turnover of host DNA inserted into viral genomes each time the virus infects a moth. Finally, we found that at least 21 of the moth TEs integrated into viral genomes underwent repeated horizontal transfers between various insect species, including some lepidopterans susceptible to baculoviruses. Our results identify host DNA influx as a potent source of genetic diversity in viral populations. They also support a role for baculoviruses as vectors of DNA HT between insects, and call for an evaluation of possible gene or TE spread when using viruses as biopesticides or gene delivery vectors.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Sébastien Leclercq; Julien Thézé; Mohamed Amine Chebbi; Isabelle Giraud; Bouziane Moumen; Lise Ernenwein; Pierre Grève; Clément Gilbert; Richard Cordaux
Significance Sex determination is an evolutionarily ancient, key developmental pathway governing sexual differentiation in animals. Sex determination systems are remarkably variable between species or groups of species, however, and the evolutionary forces underlying transitions between these systems are poorly understood. Here we provide evidence indicating that the genome of Wolbachia bacterial endosymbionts was horizontally transferred into a chromosome of the common pillbug Armadillidium vulgare, which resulted in this chromosome evolving as a new female (W) sex chromosome. This represents a remarkable mechanism underpinning the birth of sex chromosomes. We conclude that bacteria can be powerful agents of evolutionary transitions in sex determination systems in animals. Sex determination is a fundamental developmental pathway governing male and female differentiation, with profound implications for morphology, reproductive strategies, and behavior. In animals, sex differences between males and females are generally determined by genetic factors carried by sex chromosomes. Sex chromosomes are remarkably variable in origin and can differ even between closely related species, indicating that transitions occur frequently and independently in different groups of organisms. The evolutionary causes underlying sex chromosome turnover are poorly understood, however. Here we provide evidence indicating that Wolbachia bacterial endosymbionts triggered the evolution of new sex chromosomes in the common pillbug Armadillidium vulgare. We identified a 3-Mb insert of a feminizing Wolbachia genome that was recently transferred into the pillbug nuclear genome. The Wolbachia insert shows perfect linkage to the female sex, occurs in a male genetic background (i.e., lacking the ancestral W female sex chromosome), and is hemizygous. Our results support the conclusion that the Wolbachia insert is now acting as a female sex-determining region in pillbugs, and that the chromosome carrying the insert is a new W sex chromosome. Thus, bacteria-to-animal horizontal genome transfer represents a remarkable mechanism underpinning the birth of sex chromosomes. We conclude that sex ratio distorters, such as Wolbachia endosymbionts, can be powerful agents of evolutionary transitions in sex determination systems in animals.
FEMS Microbiology Ecology | 2016
Jessica Dittmer; Jérôme Lesobre; Bouziane Moumen; Didier Bouchon
We present the first in-depth investigation of the host-associated microbiota of the terrestrial isopod crustacean Armadillidium vulgare. This species is an important decomposer of organic matter in terrestrial ecosystems and a major model organism for arthropod-Wolbachia symbioses due to its well-characterized association with feminizing Wolbachia 16S rRNA gene pyrotags were used to characterize its bacterial microbiota at multiple levels: (i) in individuals from laboratory lineages and field populations and (ii) in various host tissues. This integrative approach allowed us to reveal an unexpectedly high bacterial diversity, placing this species in the same league as termites in terms of symbiotic diversity. Interestingly, both animal groups belong to the same ecological guild in terrestrial ecosystems. While Wolbachia represented the predominant taxon in infected individuals, it was not the only major player. Together, the most abundant taxa represented a large scope of symbiotic interactions, including bacterial pathogens, a reproductive parasite (Wolbachia) and potential nutritional symbionts. Furthermore, we demonstrate that individuals from different populations harboured distinct bacterial communities, indicating a strong link between the host-associated microbiota and environmental bacteria, possibly due to terrestrial isopod nutritional ecology. Overall, this work highlights the need for more studies of host-microbiota interactions and bacterial diversity in non-insect arthropods.
G3: Genes, Genomes, Genetics | 2015
Christopher H. Chandler; Myriam Badawi; Bouziane Moumen; Pierre Grève; Richard Cordaux
Mitochondrial genome structure and organization are relatively conserved among metazoans. However, in many isopods, especially the terrestrial isopods (Oniscidea), the mitochondrial genome consists of both ∼14-kb linear monomers and ∼28-kb circular dimers. This unusual organization is associated with an ancient and conserved constitutive heteroplasmic site. This heteroplasmy affects the anticodon of a tRNA gene, allowing this single locus to function as a “dual” tRNA gene for two different amino acids. Here, we further explore the evolution of these unusual mitochondrial genomes by assembling complete mitochondrial sequences for two additional Oniscidean species, Trachelipus rathkei and Cylisticus convexus. Strikingly, we find evidence of two additional heteroplasmic sites that also alter tRNA anticodons, creating additional dual tRNA genes, and that are conserved across both species. These results suggest that the unique linear/circular organization of isopods’ mitochondrial genomes may facilitate the evolution of stable mitochondrial heteroplasmies, and, conversely, once such heteroplasmies have evolved, they constrain the multimeric structure of the mitochondrial genome in these species. Finally, we outline some possible future research directions to identify the factors influencing mitochondrial genome evolution in this group.
Scientific Reports | 2017
Thomas Becking; Isabelle Giraud; Maryline Raimond; Bouziane Moumen; Christopher H. Chandler; Richard Cordaux; Clément Gilbert
Sex determination systems are highly variable in many taxa, sometimes even between closely related species. Yet the number and direction of transitions between these systems have seldom been characterized, and the underlying mechanisms are still poorly understood. Here we generated transcriptomes for 19 species of terrestrial isopod crustaceans, many of which are infected by Wolbachia bacterial endosymbionts. Using 88 single-copy orthologous genes, we reconstructed a fully resolved and dated phylogeny of terrestrial isopods. An original approach involving crossings of sex-reversed individuals allowed us to characterize the heterogametic systems of five species (one XY/XX and four ZW/ZZ). Mapping of these and previously known heterogametic systems onto the terrestrial isopod phylogeny revealed between 3 and 13 transitions of sex determination systems during the evolution of these taxa, most frequently from female to male heterogamety. Our results support that WW individuals are viable in many species, suggesting sex chromosomes are at an incipient stage of their evolution. Together, these data are consistent with the hypothesis that nucleo-cytoplasmic conflicts generated by Wolbachia endosymbionts triggered recurrent turnovers of sex determination systems in terrestrial isopods. They further establish terrestrial isopods as a model to study evolutionary transitions in sex determination systems and pave the way to molecularly characterize these systems.
Mobile Dna | 2015
Gabriel Metegnier; Thomas Becking; Mohamed Amine Chebbi; Isabelle Giraud; Bouziane Moumen; Sarah Schaack; Richard Cordaux; Clément Gilbert
BackgroundThe discovery of many fragments of viral genomes integrated in the genome of their eukaryotic host (endogenous viral elements; EVEs) has recently opened new avenues to further our understanding of viral evolution and of host-virus interactions. Here, we report the results of a comprehensive screen for EVEs in crustaceans. Following up on the recent discovery of EVEs in the terrestrial isopod, Armadillidium vulgare, we scanned the genomes of six crustacean species: a terrestrial isopod (Armadillidium nasatum), two water fleas (Daphnia pulex and D. pulicaria), two copepods (the salmon louse, Lepeophtheirus salmonis and Eurytemora affinis), and a freshwater amphipod (Hyalella azteca).ResultsIn total, we found 210 EVEs representing 14 different lineages belonging to five different viral groups that are present in two to five species: Bunyaviridae (−ssRNA), Circoviridae (ssDNA), Mononegavirales (−ssRNA), Parvoviridae (ssDNA) and Totiviridae (dsRNA). The identification of shared orthologous insertions between A. nasatum and A. vulgare indicates that EVEs have been maintained over several millions of years, although we did not find any evidence supporting exaptation. Overall, the different degrees of EVE degradation (from none to >10 nonsense mutations) suggest that endogenization has been recurrent during the evolution of the various crustacean taxa. Our study is the first to report EVEs in D. pulicaria, E. affinis and H. azteca, many of which are likely to result from recent endogenization of currently circulating viruses.ConclusionsIn conclusion, we have unearthed a large diversity of EVEs from crustacean genomes, and shown that four of the five viral groups we uncovered (Bunyaviridae, Circoviridae, Mononegavirales, Parvoviridae) were and may still be present in three to four highly divergent crustacean taxa. In addition, the discovery of recent EVEs offers an interesting opportunity to characterize new exogenous viruses currently circulating in economically or ecologically important copepod species.
Frontiers in Microbiology | 2016
Julien Verdon; Pierre Coutos-Thévenot; Marie-Hélène Rodier; Céline Landon; Segolene Depayras; Cyril Noël; Sylvain La Camera; Bouziane Moumen; Pierre Grève; Didier Bouchon; Jean-Marc Berjeaud; Christine Braquart-Varnier
Antimicrobial peptides (AMPs) are key components of innate immunity and are widespread in nature, from bacteria to vertebrate animals. In crustaceans, there are currently 15 distinct AMP families published so far in the literature, mainly isolated from members of the Decapoda order. Up to now, armadillidin is the sole non-decapod AMP isolated from the haemocytes of Armadillidium vulgare, a crustacean isopod. Its first description demonstrated that armadillidin is a linear glycine-rich (47%) cationic peptide with an antimicrobial activity directed toward Bacillus megaterium. In the present work, we report identification of armadillidin Q, a variant of armadillidin H (earlier known as armadillidin), from crude haemocyte extracts of A. vulgare using LC-MS approach. We demonstrated that both armadillidins displayed broad spectrum antimicrobial activity against several Gram-positive and Gram-negative bacteria, fungi, but were totally inactive against yeasts. Membrane permeabilization assays, only performed with armadillidin H, showed that the peptide is membrane active against bacterial and fungal strains leading to deep changes in cell morphology. This damaging activity visualized by electronic microscopy correlates with a rapid decrease of cell viability leading to highly blebbed cells. In contrast, armadillidin H does not reveal cytotoxicity toward human erythrocytes. Furthermore, no secondary structure could be defined in this study [by circular dichroism (CD) and nuclear magnetic resonance (NMR)] even in a membrane mimicking environment. Therefore, armadillidins represent interesting candidates to gain insight into the biology of glycine-rich AMPs.
Genetics | 2017
Jean Peccoud; Mohamed Amine Chebbi; Alexandre Cormier; Bouziane Moumen; Clément Gilbert; Isabelle Marcadé; Christopher H. Chandler; Richard Cordaux
The highly compact mitochondrial (mt) genome of terrestrial isopods (Oniscidae) presents two unusual features. First, several loci can individually encode two tRNAs, thanks to single nucleotide polymorphisms at anticodon sites. Within-individual variation (heteroplasmy) at these loci is thought to have been maintained for millions of years because individuals that do not carry all tRNA genes die, resulting in strong balancing selection. Second, the oniscid mtDNA genome comes in two conformations: a ∼14 kb linear monomer and a ∼28 kb circular dimer comprising two monomer units fused in palindrome. We hypothesized that heteroplasmy actually results from two genome units of the same dimeric molecule carrying different tRNA genes at mirrored loci. This hypothesis, however, contradicts the earlier proposition that dimeric molecules result from the replication of linear monomers—a process that should yield totally identical genome units within a dimer. To solve this contradiction, we used the SMRT (PacBio) technology to sequence mirrored tRNA loci in single dimeric molecules. We show that dimers do present different tRNA genes at mirrored loci; thus covalent linkage, rather than balancing selection, maintains vital variation at anticodons. We also leveraged unique features of the SMRT technology to detect linear monomers closed by hairpins and carrying noncomplementary bases at anticodons. These molecules contain the necessary information to encode two tRNAs at the same locus, and suggest new mechanisms of transition between linear and circular mtDNA. Overall, our analyses clarify the evolution of an atypical mt genome where dimerization counterintuitively enabled further mtDNA compaction.
BMC Biology | 2018
Elodie Gaulin; Michiel J. C. Pel; Laurent Camborde; Hélène San-Clemente; Sarah Courbier; Marie-Alexane Dupouy; Juliette Lengellé; Marine Veyssiere; Aurélie Le Ru; Frédéric Grandjean; Richard Cordaux; Bouziane Moumen; Clément Gilbert; Liliana M. Cano; Jean-Marc Aury; Julie Guy; Patrick Wincker; Olivier Bouchez; Christophe Klopp; Bernard Dumas
BackgroundOomycetes are a group of filamentous eukaryotic microorganisms that have colonized all terrestrial and oceanic ecosystems, and they include prominent plant pathogens. The Aphanomyces genus is unique in its ability to infect both plant and animal species, and as such exemplifies oomycete versatility in adapting to different hosts and environments. Dissecting the underpinnings of oomycete diversity provides insights into their specificity and pathogenic mechanisms.ResultsBy carrying out genomic analyses of the plant pathogen A. euteiches and the crustacean pathogen A. astaci, we show that host specialization is correlated with specialized secretomes that are adapted to the deconstruction of the plant cell wall in A. euteiches and protein degradation in A. astaci. The A. euteiches genome is characterized by a large repertoire of small secreted protein (SSP)-encoding genes that are highly induced during plant infection, and are not detected in other oomycetes. Functional analysis revealed an SSP from A. euteiches containing a predicted nuclear-localization signal which shuttles to the plant nucleus and increases plant susceptibility to infection.ConclusionCollectively, our results show that Aphanomyces host adaptation is associated with evolution of specialized secretomes and identify SSPs as a new class of putative oomycete effectors.