Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bowen Lv is active.

Publication


Featured researches published by Bowen Lv.


Bioresource Technology | 2015

Effect of CuO nanoparticles on the production and composition of extracellular polymeric substances and physicochemical stability of activated sludge flocs.

Jun Hou; Lingzhan Miao; Chao Wang; Peifang Wang; Yanhui Ao; Bowen Lv

The effects of CuO nanoparticles (NPs) on the production and composition of extracellular polymeric substances (EPS) and the physicochemical stability of activated sludge were investigated. The results showed enhanced production of loosely bound extracellular polymeric substances (LB-EPS), protecting against nanotoxicity. Specifically, polysaccharide production increased by 89.7% compared to control upon exposure to CuO NPs (50mg/L). Fourier transform-infrared spectroscopy analysis revealed changes in the polysaccharide COC group and the carboxyl group of proteins in the EPS in the presence of CuO NPs. The sludge flocs were unstable after exposure to CuO NPs (50mg/L) because of excess LB-EPS. This also corresponded with decreased cell viability of the sludge flocs, as determined by the production of reactive oxygen species and the release of lactate dehydrogenase. These results are key to assessing the adverse effects of the CuO NPs on activated sludge in wastewater treatment plants.


Bioresource Technology | 2015

Effects of CeO2 nanoparticles on production and physicochemical characteristics of extracellular polymeric substances in biofilms in sequencing batch biofilm reactor

Guoxiang You; Jun Hou; Yi Xu; Chao Wang; Peifang Wang; Lingzhan Miao; Yanhui Ao; Yi Li; Bowen Lv

Extracellular polymeric substances (EPS) are a major component of biofilms that act as a gel-like matrix, binding the cells together to form their three-dimensional structure. The effects of ceria nanoparticles (CeO2 NPs) on the production and physicochemical characteristics of EPS in biofilms in a sequencing batch biofilm reactor were investigated. Total EPS production, including loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS), increased by 35.41% compared to in control tests without CeO2 NPs. Protein production increased by 47.02% (LB-EPS) and 58.83% (TB-EPS) after 50 mg/L CeO2 NP exposure. Three-dimensional excitation-emission fluorescence spectra revealed that tyrosine (LB-EPS) and aromatic (TB-EPS) protein-like substances formed after CeO2 NP exposure. Fourier transform infrared spectroscopy results indicated the susceptibility of -OH and -NH2 in EPS hydroxyl and amine groups to CeO2 NPs. Exposure to 50 mg/L CeO2 NPs reduced the flocculating capacity of LB-EPS (51.78%) and TB-EPS (17.14%), consistent with the decreased zeta potential.


Bioresource Technology | 2015

Effects of CeO2 nanoparticles on biological nitrogen removal in a sequencing batch biofilm reactor and mechanism of toxicity

Jun Hou; Guoxiang You; Yi Xu; Chao Wang; Peifang Wang; Lingzhan Miao; Yanhui Ao; Yi Li; Bowen Lv

The effects of CeO2 nanoparticles (CeO2 NPs) exposure on biological nitrogen removal in a sequencing batch biofilm reactor (SBBR) were investigated. At low concentration (1 mg/L), no significant effect was observed on total nitrogen (TN) removal. However, at high concentrations (10 and 50 mg/L), the TN removal efficiency reduced from 74.09% to 64.26% and 55.17%, respectively. Scanning electron microscope imaging showed large amounts of CeO2 NPs adsorbed on the biofilm, which increased the production of reactive oxygen species. The exposure at only 50 mg/L CeO2 NPs measurably affected the lactate dehydrogenase release. Confocal laser scanning microscopy showed that high concentrations of CeO2 NPs reduced bacterial viability. Moreover, after a short-term exposure, extracellular polymeric substances (EPS) were observed to increase, forming a compact matrix to protect the bacteria. The activities of nitrate reductase and ammonia monooxygenase were inhibited, but there was no significant impact on the activity of nitrite oxidoreductase.


Science of The Total Environment | 2016

Effects of ZnO nanoparticles and Zn(2+) on fluvial biofilms and the related toxicity mechanisms.

Yi Xu; Chao Wang; Jun Hou; Shanshan Dai; Peifang Wang; Lingzhan Miao; Bowen Lv; Yangyang Yang; Guoxiang You

Zinc oxide nanoparticles (ZnO NPs) used in consumer products are largely released into the environment through the wastewater stream. The health hazard of ZnO NPs and the contribution of dissolved Zn(2+) in toxicity of ZnO NPs has attracted extensive worldwide attention. In this study, the toxic effects of ZnO nanoparticles (ZnO NPs) and the effects of dissolved Zn(2+) on fluvial biofilms were investigated. At the end of the exposure time (21 days), scanning electron microscopy (SEM) images and bioaccumulation experiments revealed that large quantities of ZnO NPs were adsorbed on the biofilm. The algal biomasses were significantly decreased by six- and eleven-fold compared with the control (1.43 μg/L) by exposure to concentrations of 100mg/L ZnO NPs and 7.85 mg/L Zn(2+), respectively. Moreover, under the same exposure conditions, the quantum yields presented contents of 53.33 and 33.33% relative to the control, and a shift in the community composition that manifested as a strong reduction in diatoms was observed from 7 days and reached 15.63 and 6.25% of the control after 21 days of exposure, respectively. The reductions in bacteria viability and reactive oxygen species (ROS) production were noticeably enhanced following exposure to 100mg/L ZnO NPs and 7.85 mg/L Zn(2+), respectively. Additionally, the acute and rapid toxicity of Zn(2+) and the increasing toxicity of the ZnO NPs with increased bioaccumulation were noted in the exposure experiment.


Journal of Nanoparticle Research | 2015

Enhanced stability and dissolution of CuO nanoparticles by extracellular polymeric substances in aqueous environment

Lingzhan Miao; Chao Wang; Jun Hou; Peifang Wang; Yanhui Ao; Yi Li; Bowen Lv; Yangyang Yang; Guoxiang You; Yi Xu

Stability of engineered nanoparticles in aquatic environment is an essential parameter to evaluate their fate, bioavailability, and potential toxic effects toward living organisms. As CuO NPs enter the wastewater systems, they will encounter extracellular polymeric substances (EPS) from microbial community before directly interacting with bacterial cells. EPS may play an important role in affecting the stability and the toxicity of CuO NPs in aquatic environment. In this study, the influences of flocculent sludge-derived EPS, as well as model protein (BSA) and natural polysaccharides (alginate) on the dissolution kinetics and colloidal stability of CuO NPs were investigated. Results showed that the presence of NOMs strongly suppressed CuO NPs aggregation, confirmed by DLS, zeta potentials, and TEM analysis. The enhanced stability of CuO NPs in the presence of EPS and alginate were attributed to the electrostatic combined with steric repulsion, while the steric-hindrance effect may be the predominant mechanism retarding nano-CuO aggregation for BSA. Higher degrees of copper release were achieved with the increasing concentrations of NOMs. EPS are more effective than alginate and BSA in releasing copper, probably due to the abundant functional groups and the excellent metal-binding capacity. The ratio of free-Cu2+/total dissolved Cu significantly decreased in the presence of EPS, indicating that EPS may affect the speciation and Cu bioavailability in aqueous environment. These results may be important for assessing the fate and transport behaviors of CuO NPs in the environment as well as for setting up usage regulation and treatment strategy.Graphical Abstract


Bioresource Technology | 2016

Aggregation and removal of copper oxide (CuO) nanoparticles in wastewater environment and their effects on the microbial activities of wastewater biofilms.

Lingzhan Miao; Chao Wang; Jun Hou; Peifang Wang; Yanhui Ao; Yi Li; Nan Geng; Yu Yao; Bowen Lv; Yangyang Yang; Guoxiang You; Yi Xu

The transport behaviors of copper oxide (CuO) NPs in wastewater matrix and their possible impacts on microbial activities of stable wastewater biofilms cultivated in a lab scale rotating biological contactor (RBC) were investigated. Significant aggregation of CuO NPs was observed in the wastewater samples, depending on their mass concentrations. Extracellular polymeric substance (EPS)-adsorbed copper accounted for a large proportion of the total copper accumulated in biofilms. The microelectrode profiles showed that a single pulse exposure to 50mg/L CuO resulted in a deeper penetration depth of oxygen in biofilms compared to the CuO NP free biofilms. The maximum oxygen consumption rate shifted to the deeper parts of biofilms, indicating that the respiration activities of bacteria in the top region of the biofilms was significantly inhibited by CuO NPs. Biofilms secreted more EPS in response to the nano-CuO stress, with higher production of proteins compared to polysaccharides.


Environmental Science and Pollution Research | 2015

Effects of pH and natural organic matter (NOM) on the adsorptive removal of CuO nanoparticles by periphyton.

Lingzhan Miao; Chao Wang; Jun Hou; Peifang Wang; Yanhui Ao; Shanshan Dai; Bowen Lv

The presence of nanoparticles (NPs) in natural aquatic environment is a potential risk to aquatic and human life. Periphyton, ubiquitous in aquatic environment, has been used to remove pollutants from aquatic systems. Understanding the interaction between NPs and periphyton will help to better predict the behavior and fate of NPs in aquatic media. This study was aimed to investigate the CuO NP biosorption mechanism by periphyton at acidic, neutral, and alkaline pH and with varying natural organic matter (NOM) concentrations. The rate of adsorption and removal of CuO NPs was decreased with increase in initial pH and NOM concentration. The zeta potential study suggests that the biosorption of CuO NPs by periphyton was related to electrostatic force of attraction. The particle size distribution of CuO NPs in solution with different NOM concentrations played an important role in CuO NP removal. The well fit between pseudo-first-order kinetics and adsorption process indicated that physical sorption appears to be the dominating process. These results show that periphyton can be employed for an environmentally benign and effective solution for NP removal.


Science of The Total Environment | 2017

Response of wastewater biofilm to CuO nanoparticle exposure in terms of extracellular polymeric substances and microbial community structure

Lingzhan Miao; Chao Wang; Jun Hou; Peifang Wang; Yanhui Ao; Yi Li; Yu Yao; Bowen Lv; Yangyang Yang; Guoxiang You; Yi Xu; Qihao Gu

The growing production and application of CuO nanoparticles increase the chance that these particles will be released into wastewater treatment plants (WWTPs) and interact with microorganisms. However, the toxicity response mechanism of biofilm to NP exposure may be different from that of activated sludge due to the denser and stronger microbial aggregate structure of biofilm. Thus, in this study, the response to CuO NPs of wastewater biofilm collected from a rotating biological contactor was investigated. Short-term exposure (24h) to CuO NPs led to a great loss in cell viability, and SEM-EDS images revealed that the nano-CuO aggregates were not transformed to Cu-S species in the biofilm samples. In response, more extracellular polymeric substance (EPS) (especially loosely bound-EPS) was produced in wastewater biofilm exposed to CuO NPs, with a higher content of protein compared to polysaccharides. The shifts of fluorescence intensity and peak locations in 3D-EEM fluorescence spectra indicated chemical changes of the EPS components. FT-IR analysis revealed that exposure to nano-CuO had more distinct effects on the functional groups of proteins and polysaccharides in LB-EPS. Illumina sequencing of 16S rRNA gene amplicons revealed that CuO NPs enhanced bacterial diversity. The bacterial community structure significantly shifted, with a significantly increased abundance of Comamonas, a slight increase in Zoogloea, and a notable decrease in Flavobacterium. The shifts of these dominant genera may be associated with altered EPS production, which might result in microbial community function fluctuations. In conclusion, exposure to high concentrations of CuO NPs has the potential to shape wastewater biofilm bacterial community structure.


Bioresource Technology | 2017

Effects of cerium oxide nanoparticles on the species and distribution of phosphorus in enhanced phosphorus removal sequencing batch biofilm reactor

Yi Xu; Chao Wang; Jun Hou; Peifang Wang; Guoxiang You; Lingzhan Miao; Bowen Lv; Yangyang Yang

The short term (8h) influences of cerium oxide nanoparticles (CeO2NPs) on the process of phosphorus removal in biofilm were investigated. At concentration of 0.1mg/L, CeO2 NPs posed no impacts on total phosphorus (TP) removal. While at 20mg/L, TP removal efficiency reduced from 85.16% to 59.62%. Results of P distribution analysis and 31P nuclear magnetic resonance spectroscopy implied that the anaerobic degradation of polyphosphate (polyP) and the release of orthophosphate in extracellular polymeric substances (EPS) were inhibited. After aerobic exposure, the average chain length of polyP in microbial cells and EPS was shorter than control, and monoester and diester phosphates in cells were observed to release into EPS. Moreover, the EPS production and its contribution to P removal increased, while the capacity of EPS in P storage declined. X-ray diffraction analysis and saturation index calculation revealed that the formation of inorganic P precipitation in biofilm was inhibited.


Environmental Research | 2016

Effects of CeO2 nanoparticles on sludge aggregation and the role of extracellular polymeric substances – Explanation based on extended DLVO

Guoxiang You; Jun Hou; Peifang Wang; Yi Xu; Chao Wang; Lingzhan Miao; Bowen Lv; Yangyang Yang; Hao Luo

The extended DLVO (XDLVO) theory was applied to elucidate the potential effects of CeO2 nanoparticles (CeO2 NPs) on sludge aggregation and the role of extracellular polymeric substances (EPS). In this study, seven different concentrations of CeO2 NPs were added to activated sludge cultured in sequencing batch reactors (SBRs) and compared with a control test that received no CeO2 NPs. After exposure to 50mg/L CeO2 NPs, a negligible change (p>0.1) occurred in the sludge volume index (SVI), whereas the flocculability and aggregation of the sludge decreased by 18.8% and 11.2%, respectively, resulting in a high effluent turbidity. The XDLVO theory demonstrated that the adverse effects of the CeO2 NPs on sludge aggregation were due to an enhanced barrier energy. Compared to the van der Waals energies (WA) and the electric double layer (WR), the acid-base interaction (WAB) markedly changed for the various concentrations of CeO2 NPs. The EPS played a decisive role in the sludge surface characteristics, as the removal of EPS equals to the negative effects induced by 5-10mg/L CeO2 NPs on the sludge flocculability and aggregation. The presence of CeO2 NPs induced negative contributions to the tight boundary EPS (TB-EPS) and core bacteria while positive contributions to the total interaction energy of the loose boundary EPS (LB-EPS).

Collaboration


Dive into the Bowen Lv's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chao Wang

Technological and Higher Education Institute of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge