Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Boyce Collins is active.

Publication


Featured researches published by Boyce Collins.


Acta Biomaterialia | 2013

In vitro degradation and cytotoxicity response of Mg-4% Zn-0.5% Zr (ZK40) alloy as a potential biodegradable material.

Daeho Hong; Partha Saha; Da-Tren Chou; Boeun Lee; Boyce Collins; Zongqing Tan; Zhongyun Dong; Prashant N. Kumta

Mg-4 wt.% Zn-0.5 wt.% Zr (ZK40) alloy was studied as a candidate material for biodegradable metallic implants in terms of its biocorrosion resistance, mechanical properties and cytocompatibility. The corrosion characteristics of ZK40 alloy were assessed by potentiodynamic polarization and immersion testing in DMEM+10% FBS solution. Analysis of the degradation characteristics by potentiodynamic polarization measurements shows the corrosion rates of ZK40 alloy in as-cast and solution treatment (T4) condition were slightly higher than those of pure Mg or as-drawn AZ31. Determination of the corrosion rate by the weight loss technique reveals that the as-cast ZK40 resulted in slower degradation than other alloy specimens after 7 days of immersion but exhibited accelerated degradation after 14 and 21 days, respectively. T4-treated ZK40 exhibited stable degradation rates compared to as-cast ZK40 and close to those of pure Mg and AZ31 during immersion testing for 14 and 21 days. In order to examine the in vitro cytocompatibility of ZK40 alloy, live/dead cell viability assay and indirect MTT assay were performed using a murine osteoblast-like cell line (MC3T3). After 3 days of direct culture of MC3T3 on ZK40 alloys the live/dead assay indicated favorable cell viability and attachment. The degradation product of ZK40 also showed minimal cytotoxicity when assessed in indirect MTT assay. The mechanical properties of the as-cast and T4-treated ZK40 alloy were superior to those of pure Mg and comparable to as-drawn AZ31. Solution treatment did not significantly enhance the cytocompatibility and mechanical properties of ZK40 alloy. Overall, the ZK40 alloy exhibited favorable cytocompatibility, biocorrosion, and mechanical properties rendering it a potential candidate for degradable implant applications.


Acta Biomaterialia | 2013

Effect of biologically relevant ions on the corrosion products formed on alloy AZ31B: an improved understanding of magnesium corrosion.

Yongseok Jang; Boyce Collins; Jagannathan Sankar; Yeoheung Yun

Simulated physiological solutions mimicking human plasma have been utilized to study the in vitro corrosion of biodegradable metals. However, corrosion and corrosion product formation are different for different solutions with varied responses and, hence, the prediction of in vivo degradation behavior is not feasible based on these studies alone. This paper reports the role of physiologically relevant salts and their concentrations on the corrosion behavior of a magnesium alloy (AZ31B) and subsequent corrosion production formation. Immersion tests were performed for three different concentrations of Ca(2+), HPO4(2-), HCO3(-) to identify the effect of each ion on the corrosion of AZ31B assessed at 1, 3 and 10 days. Time-lapse morphological characterization of the samples was performed using X-ray computed tomography and scanning electron microscopy. The chemical composition of the surface corrosion products was determined by electron dispersive X-ray spectroscopy and X-ray diffraction. The results show that: (1) calcium is not present in the corrosion product layer when only Cl(-) and OH(-) anions are available; (2) the presence of phosphate induces formation of a densely packed amorphous magnesium phosphate corrosion product layer when HPO4(2-) and Cl(-) are present in solution; (3) octacalcium phosphate and hydroxyapatite (HAp) are deposited on the surface of the magnesium alloy when HPO4(2-) and Ca(2+) are present together in NaCl solution (this coating limits localized corrosion and increases general corrosion resistance); (4) addition of HCO3(-) accelerates the overall corrosion rate, which increases with increasing bicarbonate concentration; (5) the corrosion rate decreases due to the formation of insoluble HAp on the surface when HCO3(-), Ca(2+), and HPO4(2-) are present together.


Acta Biomaterialia | 2014

Flow-induced corrosion behavior of absorbable magnesium-based stents.

Juan Wang; Venkataraman Giridharan; Vesselin Shanov; Zhigang Xu; Boyce Collins; Leon White; Yongseok Jang; Jagannathan Sankar; Nan Huang; Yeoheung Yun

The aim of this work was to study corrosion behavior of magnesium (Mg) alloys (MgZnCa plates and AZ31 stents) under varied fluid flow conditions representative of the vascular environment. Experiments revealed that fluid hydrodynamics, fluid flow velocity and shear stress play essential roles in the corrosion behavior of absorbable magnesium-based stent devices. Flow-induced shear stress (FISS) accelerates the overall corrosion (including localized, uniform, pitting and erosion corrosions) due to the increased mass transfer and mechanical force. FISS increased the average uniform corrosion rate, the localized corrosion coverage ratios and depths and the removal rate of corrosion products inside the corrosion pits. For MgZnCa plates, an increase of FISS results in an increased pitting factor but saturates at an FISS of ∼0.15Pa. For AZ31 stents, the volume loss ratio (31%) at 0.056Pa was nearly twice that (17%) at 0Pa before and after corrosion. Flow direction has a significant impact on corrosion behavior as more severe pitting and erosion corrosion was observed on the back ends of the MgZnCa plates, and the corrosion product layer facing the flow direction peeled off from the AZ31 stent struts. This study demonstrates that flow-induced corrosion needs be understood so that Mg-based stents in vascular environments can be effectively designed.


RSC Advances | 2014

Aligned carbon nanotube/copper sheets: a new electrocatalyst for CO2 reduction to hydrocarbons

Youngmi Koo; Rachit Malik; Noe T. Alvarez; Leon White; Vesselin Shanov; Mark J. Schulz; Boyce Collins; Jagannathan Sankar; Yeoheung Yun

We controlled the morphologies of copper (Cu) nanostructure on aligned carbon nanotube (CNT) sheets, influencing the efficiency of the electrocatalytic reduction of CO2. Functionalized CNT sheets affected the pulsed electrodeposition of copper in terms of 3D growth, bonding, and electrochemical activity. CNT/Cu sheet electrocatalyst shows high performance in electrochemical reduction of CO2 to hydrocarbons at room temperature and atmospheric pressure. Reduction products were carbon monoxide (CO), methane (CH4), and ethylene (C2H4) gases. Carbon monoxide yields (178 μmol cm2 mA−1 h−1) and methane yields (346 μmol cm2 mA−1 h−1) at oxygen-plasma-treated CNT/Cu sheet electrodes were remarkably higher than other CNT/Cu and CNT sheets. Experimental results also show 3D morphology of copper growth on CNT sheets may play a critical role in hydrocarbon products from CO2.


Materials Science and Engineering: C | 2014

Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant.

Yongseok Jang; Zongqing Tan; Chris Jurey; Boyce Collins; Aditya Badve; Zhongyun Dong; Chan-Hee Park; Cheol Sang Kim; Jagannathan Sankar; Yeoheung Yun

This study was conducted to identify the differences between corrosion rates, corrosion types, and corrosion products in different physiological environments for AZ31 magnesium alloy and plasma electrolytic oxidation (PEO) treated AZ31 magnesium alloy. In vitro and in vivo tests were performed in Hanks Balanced Salt Solution (HBSS) and mice for 12 weeks, respectively. The corrosion rates of both AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy were calculated based on DC polarization curves, volume of hydrogen evolution, and the thickness of corrosion products formed on the surface. Micro X-ray computed tomography (Micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to analyze morphological and chemical characterizations of corrosion products. The results show that there is more severe localized corrosion after in vitro test in HBSS; however, the thicknesses of corrosion products formed on the surface for AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy in vivo were about 40% thicker than the thickness of corrosion products generated in vitro. The ratio of Ca and P (Ca/P) in the corrosion products also differed. The Ca deficient region and higher content of Al in corrosion product than AZ31 magnesium alloy were identified after in vivo test in contrast with the result of in vitro test.


Materials Science and Engineering: C | 2015

Understanding corrosion behavior of Mg-Zn-Ca alloys from subcutaneous mouse model: effect of Zn element concentration and plasma electrolytic oxidation.

Yongseok Jang; Zongqing Tan; Chris Jurey; Zhigang Xu; Zhongyun Dong; Boyce Collins; Yeoheung Yun; Jagannathan Sankar

Mg-Zn-Ca alloys are considered as suitable biodegradable metallic implants because of their biocompatibility and proper physical properties. In this study, we investigated the effect of Zn concentration of Mg-xZn-0.3Ca (x=1, 3 and 5wt.%) alloys and surface modification by plasma electrolytic oxidation (PEO) on corrosion behavior in in vivo environment in terms of microstructure, corrosion rate, types of corrosion, and corrosion product formation. Microstructure analysis of alloys and morphological characterization of corrosion products were conducted using x-ray computed tomography (micro-CT) and scanning electron microscopy (SEM). Elemental composition and crystal structure of corrosion products were determined using x-ray diffraction (XRD) and electron dispersive x-ray spectroscopy (EDX). The results show that 1) as-cast Mg-xZn-0.3Ca alloys are composed of Mg matrix and a secondary phase of Ca2Mg6Zn3 formed along grain boundaries, 2) the corrosion rate of Mg-xZn-0.3Ca alloys increases with increasing concentration of Zn in the alloy, 3) corrosion rates of alloys treated by PEO sample are decreased in in vivo environment, and 4) the corrosion products of these alloys after in vivo tests are identified as brucite (Mg(OH)2), hydroxyapatite (Ca10(PO4)6(OH)2), and magnesite (MgCO3·3H2O).


PLOS ONE | 2017

Biodegradability and platelets adhesion assessment of magnesium-based alloys using a microfluidic system

Lumei Liu; Youngmi Koo; Boyce Collins; Zhigang Xu; Jagannathan Sankar; Yeoheung Yun

Magnesium (Mg)-based stents are extensively explored to alleviate atherosclerosis due to their biodegradability and relative hemocompatibility. To ensure the quality, safety and cost-efficacy of bioresorbable scaffolds and full utilization of the material tunability afforded by alloying, it is critical to access degradability and thrombosis potential of Mg-based alloys using improved in vitro models that mimic as closely as possible the in vivo microenvironment. In this study, we investigated biodegradation and initial thrombogenic behavior of Mg-based alloys at the interface between Mg alloys’ surface and simulated physiological environment using a microfluidic system. The degradation properties of Mg-based alloys WE43, AZ31, ZWEK-L, and ZWEK-C were evaluated in complete culture medium and their thrombosis potentials in platelet rich plasma, respectively. The results show that 1) physiological shear stress increased the corrosion rate and decreased platelets adhesion rate as compared to static immersion; 2) secondary phases and impurities in material composition induced galvanic corrosion, resulting in higher corrosion resistance and platelet adhesion rate; 3) Mg-based alloys with higher corrosion rate showed higher platelets adhesion rate. We conclude that a microfluidic-based in vitro system allows evaluation of biodegradation behaviors and platelets responses of Mg-based alloys under specific shear stress, and degradability is related to platelets adhesion.


Materials | 2014

Effect of Mucin and Bicarbonate Ion on Corrosion Behavior of AZ31 Magnesium Alloy for Airway Stents

Yongseok Jang; Daniel Owuor; Jenora T. Waterman; Leon White; Boyce Collins; Jagannathan Sankar; Thomas W. Gilbert; Yeoheung Yun

The biodegradable ability of magnesium alloys is an attractive feature for tracheal stents since they can be absorbed by the body through gradual degradation after healing of the airway structure, which can reduce the risk of inflammation caused by long-term implantation and prevent the repetitive surgery for removal of existing stent. In this study, the effects of bicarbonate ion (HCO3−) and mucin in Gamble’s solution on the corrosion behavior of AZ31 magnesium alloy were investigated, using immersion and electrochemical tests to systematically identify the biodegradation kinetics of magnesium alloy under in vitro environment, mimicking the epithelial mucus surfaces in a trachea for development of biodegradable airway stents. Analysis of corrosion products after immersion test was performed using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) was used to identify the effects of bicarbonate ions and mucin on the corrosion behavior of AZ31 magnesium alloys with the temporal change of corrosion resistance. The results show that the increase of the bicarbonate ions in Gamble’s solution accelerates the dissolution of AZ31 magnesium alloy, while the addition of mucin retards the corrosion. The experimental data in this work is intended to be used as foundational knowledge to predict the corrosion behavior of AZ31 magnesium alloy in the airway environment while providing degradation information for future in vivo studies.


Archive | 2012

Nanomaterial-Based Electroanalytical Biosensors for Cancer and Bone Disease

Yeoheung Yun; Boyce Collins; Zhongyun Dong; Christen Renken; Mark J. Schulz; Amit Bhattacharya; Nelson B. Watts; Yongseok Jang; Devdas Pai; Jag Sankar

With recent advances in novel nanomaterial development, electroanalytical biosensors are undergoing a paradigm shift. New nanomaterial-based electrochemical biosensors can detect specific biomolecules at previously unattainable ultra-low concentrations. This chapter lists the existing biosensor technologies, describes the mechanisms, and applications of two types of electroanalytical biosensors, and then identifies the barriers in developing these biosensors and concludes by illustrating how nanomaterials can help overcome these limitations. A key feature of the electrochemical impedance sensor is that biomolecules detection can occur in real time without any pre-labeling. Specifically, this chapter summarizes the state of knowledge of the impedance sensor as applied in cancer and bone disease studies, which are clinically relevant.


Volume 14: Emerging Technologies; Engineering Management, Safety, Ethics, Society, and Education; Materials: Genetics to Structures | 2014

Biodegradable Magnesium Implant: In Vivo and In Vitro Convergence

Yeoheung Yun; Yongseok Jang; Juan Wang; Zhongyun Dong; Vesselin Shanov; Jagannathan Sankar; Youngmi Koo; Leon White; Boyce Collins

In recent years, magnesium alloys have emerged as possible biodegradable implant material. A fundamental understanding of the nature of magnesium corrosion and the ability to control this process in vivo is critical to advancing the case for clinical use of magnesium based biomaterials. The biodegradation of magnesium is fundamentally linked to studies of its corrosion, which is dependent on the interfacing dynamics between the material and its environment. Thus, it is required to confirm what variable differentiate the corrosion behavior between in vitro and in vivo before optimizing and standardizing of in vitro test. This study was conducted to understand the biodegradation behavior of commercial AZ31 and Mg-Zn-Ca alloys with plasma electrolyte oxidation (PEO) under various biological environments using in vivo and in vitro testing methods mimicking in vivo physiological environment. This study is focused on the effect of Zn element concentration and PEO coating for magnesium alloys, and the correlation between the in vivo and in vitro in terms of corrosion rate, types of corrosion and corrosion product formation.Copyright

Collaboration


Dive into the Boyce Collins's collaboration.

Top Co-Authors

Avatar

Yeoheung Yun

North Carolina Agricultural and Technical State University

View shared research outputs
Top Co-Authors

Avatar

Jagannathan Sankar

North Carolina Agricultural and Technical State University

View shared research outputs
Top Co-Authors

Avatar

Yongseok Jang

North Carolina Agricultural and Technical State University

View shared research outputs
Top Co-Authors

Avatar

Youngmi Koo

North Carolina Agricultural and Technical State University

View shared research outputs
Top Co-Authors

Avatar

Zhongyun Dong

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Leon White

National Science Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark J. Schulz

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Zongqing Tan

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Devdas Pai

North Carolina Agricultural and Technical State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge