Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Boyke Bunk is active.

Publication


Featured researches published by Boyke Bunk.


The ISME Journal | 2010

The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker's guide to life in the sea.

Irene Wagner-Döbler; Britta Ballhausen; Martine Berger; Thorsten Brinkhoff; Ina Buchholz; Boyke Bunk; Heribert Cypionka; Rolf Daniel; Thomas Drepper; Gunnar Gerdts; Sarah Hahnke; Cliff Han; Dieter Jahn; Daniela Kalhoefer; Hajnalka Kiss; Hans-Peter Klenk; Nikos C. Kyrpides; Wolfgang Liebl; Heiko Liesegang; Linda Meincke; Amrita Pati; Jörn Petersen; Tanja Piekarski; Claudia Pommerenke; Silke Pradella; Rüdiger Pukall; Ralf Rabus; Erko Stackebrandt; Sebastian Thole; Linda S. Thompson

Dinoroseobacter shibae DFL12T, a member of the globally important marine Roseobacter clade, comprises symbionts of cosmopolitan marine microalgae, including toxic dinoflagellates. Its annotated 4 417 868 bp genome sequence revealed a possible advantage of this symbiosis for the algal host. D. shibae DFL12T is able to synthesize the vitamins B1 and B12 for which its host is auxotrophic. Two pathways for the de novo synthesis of vitamin B12 are present, one requiring oxygen and the other an oxygen-independent pathway. The de novo synthesis of vitamin B12 was confirmed to be functional, and D. shibae DFL12T was shown to provide the growth-limiting vitamins B1 and B12 to its dinoflagellate host. The Roseobacter clade has been considered to comprise obligate aerobic bacteria. However, D. shibae DFL12T is able to grow anaerobically using the alternative electron acceptors nitrate and dimethylsulfoxide; it has the arginine deiminase survival fermentation pathway and a complex oxygen-dependent Fnr (fumarate and nitrate reduction) regulon. Many of these traits are shared with other members of the Roseobacter clade. D. shibae DFL12T has five plasmids, showing examples for vertical recruitment of chromosomal genes (thiC) and horizontal gene transfer (cox genes, gene cluster of 47 kb) possibly by conjugation (vir gene cluster). The long-range (80%) synteny between two sister plasmids provides insights into the emergence of novel plasmids. D. shibae DFL12T shows the most complex viral defense system of all Rhodobacterales sequenced to date.


Journal of Bacteriology | 2011

Genome Sequences of the Biotechnologically Important Bacillus megaterium Strains QM B1551 and DSM319

Mark Eppinger; Boyke Bunk; Mitrick A. Johns; Janaka N. Edirisinghe; Kirthi K. Kutumbaka; Sara S. K. Koenig; Heather Huot Creasy; M. J. Rosovitz; David R. Riley; Sean C. Daugherty; Madeleine Martin; Liam D. H. Elbourne; Ian T. Paulsen; Rebekka Biedendieck; Christopher Braun; Scott Grayburn; Sourabh Dhingra; Vitaliy Lukyanchuk; Barbara Ball; Riaz Ul-Qamar; Jürgen Seibel; Erhard Bremer; Dieter Jahn; Jacques Ravel; Patricia S. Vary

Bacillus megaterium is deep-rooted in the Bacillus phylogeny, making it an evolutionarily key species and of particular importance in understanding genome evolution, dynamics, and plasticity in the bacilli. B. megaterium is a commercially available, nonpathogenic host for the biotechnological production of several substances, including vitamin B(12), penicillin acylase, and amylases. Here, we report the analysis of the first complete genome sequences of two important B. megaterium strains, the plasmidless strain DSM319 and QM B1551, which harbors seven indigenous plasmids. The 5.1-Mbp chromosome carries approximately 5,300 genes, while QM B1551 plasmids represent a combined 417 kb and 523 genes, one of the largest plasmid arrays sequenced in a single bacterial strain. We have documented extensive gene transfer between the plasmids and the chromosome. Each strain carries roughly 300 strain-specific chromosomal genes that account for differences in their experimentally confirmed phenotypes. B. megaterium is able to synthesize vitamin B(12) through an oxygen-independent adenosylcobalamin pathway, which together with other key energetic and metabolic pathways has now been fully reconstructed. Other novel genes include a second ftsZ gene, which may be responsible for the large cell size of members of this species, as well as genes for gas vesicles, a second β-galactosidase gene, and most but not all of the genes needed for genetic competence. Comprehensive analyses of the global Bacillus gene pool showed that only an asymmetric region around the origin of replication was syntenic across the genus. This appears to be a characteristic feature of the Bacillus spp. genome architecture and may be key to their sporulating lifestyle.


Nucleic Acids Research | 2009

PRODORIC (release 2009): a database and tool platform for the analysis of gene regulation in prokaryotes

Andreas Grote; Johannes C. Klein; Ida Retter; Isam Haddad; Susanne Behling; Boyke Bunk; Ilona Biegler; Svitlana Yarmolinetz; Dieter Jahn; Richard Münch

PRODORIC is a database that provides annotated information on the regulation of gene expression in prokaryotes. It integrates a large compilation of gene regulatory data including transcription factor binding sites, promoter structures and gene expression patterns. The whole dataset is manually curated and relies on published results extracted from the scientific literature. The current extended version of PRODORIC contains gene regulatory data for several new microorganisms. Major improvements were realized in the design of the web interface and the accessibility of the stored information. The database was further improved by the implementation of various new tools for the elucidation of gene regulatory interactions. Thus, the PRODORIC platform represents a framework for the interactive exploration, prediction and evaluation of gene regulatory networks in prokaryotes. PRODORIC is accessible at http://www.prodoric.de.


Genome Biology and Evolution | 2014

Chromera velia, Endosymbioses and the Rhodoplex Hypothesis—Plastid Evolution in Cryptophytes, Alveolates, Stramenopiles, and Haptophytes (CASH Lineages)

Jörn Petersen; Ann-Kathrin Ludewig; Victoria Michael; Boyke Bunk; Michael Jarek; Denis Baurain; Henner Brinkmann

The discovery of Chromera velia, a free-living photosynthetic relative of apicomplexan pathogens, has provided an unexpected opportunity to study the algal ancestry of malaria parasites. In this work, we compared the molecular footprints of a eukaryote-to-eukaryote endosymbiosis in C. velia to their equivalents in peridinin-containing dinoflagellates (PCD) to reevaluate recent claims in favor of a common ancestry of their plastids. To this end, we established the draft genome and a set of full-length cDNA sequences from C. velia via next-generation sequencing. We documented the presence of a single coxI gene in the mitochondrial genome, which thus represents the genetically most reduced aerobic organelle identified so far, but focused our analyses on five “lucky genes” of the Calvin cycle. These were selected because of their known support for a common origin of complex plastids from cryptophytes, alveolates (represented by PCDs), stramenopiles, and haptophytes (CASH) via a single secondary endosymbiosis with a red alga. As expected, our broadly sampled phylogenies of the nuclear-encoded Calvin cycle markers support a rhodophycean origin for the complex plastid of Chromera. However, they also suggest an independent origin of apicomplexan and dinophycean (PCD) plastids via two eukaryote-to-eukaryote endosymbioses. Although at odds with the current view of a common photosynthetic ancestry for alveolates, this conclusion is nonetheless in line with the deviant plastome architecture in dinoflagellates and the morphological paradox of four versus three plastid membranes in the respective lineages. Further support for independent endosymbioses is provided by analysis of five additional markers, four of them involved in the plastid protein import machinery. Finally, we introduce the “rhodoplex hypothesis” as a convenient way to designate evolutionary scenarios where CASH plastids are ultimately the product of a single secondary endosymbiosis with a red alga but were subsequently horizontally spread via higher-order eukaryote-to-eukaryote endosymbioses.


Nature microbiology | 2017

Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium

Sandrine Brugiroux; Markus Beutler; Carina Pfann; Debora Garzetti; Hans-Joachim Ruscheweyh; Diana Ring; Manuel Diehl; Simone Herp; Yvonne Lötscher; Saib Hussain; Boyke Bunk; Rüdiger Pukall; Daniel H. Huson; Philipp C. Münch; Alice C. McHardy; Kathy D. McCoy; Andrew J. Macpherson; Alexander Loy; Thomas Clavel; David Berry; Bärbel Stecher

Protection against enteric infections, also termed colonization resistance, results from mutualistic interactions of the host and its indigenous microbes. The gut microbiota of humans and mice is highly diverse and it is therefore challenging to assign specific properties to its individual members. Here, we have used a collection of murine bacterial strains and a modular design approach to create a minimal bacterial community that, once established in germ-free mice, provided colonization resistance against the human enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm). Initially, a community of 12 strains, termed Oligo-Mouse-Microbiota (Oligo-MM12), representing members of the major bacterial phyla in the murine gut, was selected. This community was stable over consecutive mouse generations and provided colonization resistance against S. Tm infection, albeit not to the degree of a conventional complex microbiota. Comparative (meta)genome analyses identified functions represented in a conventional microbiome but absent from the Oligo-MM12. By genome-informed design, we created an improved version of the Oligo-MM community harbouring three facultative anaerobic bacteria from the mouse intestinal bacterial collection (miBC) that provided conventional-like colonization resistance. In conclusion, we have established a highly versatile experimental system that showed efficacy in an enteric infection model. Thus, in combination with exhaustive bacterial strain collections and systems-based approaches, genome-guided design can be used to generate insights into microbe–microbe and microbe–host interactions for the investigation of ecological and disease-relevant mechanisms in the intestine.


The ISME Journal | 2011

Transcriptional response of the photoheterotrophic marine bacterium Dinoroseobacter shibae to changing light regimes

Jürgen Tomasch; Regina Gohl; Boyke Bunk; María Suárez Diez; Irene Wagner-Döbler

Bacterial aerobic anoxygenic photosynthesis (AAP) is an important mechanism of energy generation in aquatic habitats, accounting for up to 5% of the surface oceans photosynthetic electron transport. We used Dinoroseobacter shibae, a representative of the globally abundant marine Roseobacter clade, as a model organism to study the transcriptional response of a photoheterotrophic bacterium to changing light regimes. Continuous cultivation of D. shibae in a chemostat in combination with time series microarray analysis was used in order to identify gene-regulatory patterns after switching from dark to light and vice versa. The change from heterotrophic growth in the dark to photoheterotrophic growth in the light was accompanied by a strong but transient activation of a broad stress response to the formation of singlet oxygen, an immediate downregulation of photosynthesis-related genes, fine-tuning of the expression of ETC components, as well as upregulation of the transcriptional and translational apparatus. Furthermore, our data suggest that D. shibae might use the 3-hydroxypropionate cycle for CO2 fixation. Analysis of the transcriptome dynamics after switching from light to dark showed relatively small changes and a delayed activation of photosynthesis gene expression, indicating that, except for light other signals must be involved in their regulation. Providing the first analysis of AAP on the level of transcriptome dynamics, our data allow the formulation of testable hypotheses on the cellular processes affected by AAP and the mechanisms involved in light- and stress-related gene regulation.


Microbial Biotechnology | 2010

Metabolic engineering of cobalamin (vitamin B12) production in Bacillus megaterium

Rebekka Biedendieck; Marco Malten; Heiko Barg; Boyke Bunk; Jan-Henning Martens; Evelyne Deery; Helen K. Leech; Martin J. Warren; Dieter Jahn

Cobalamin (vitamin B12) production in Bacillus megaterium has served as a model system for the systematic evaluation of single and multiple directed molecular and genetic optimization strategies. Plasmid and genome‐based overexpression of genes involved in vitamin B12 biosynthesis, including cbiX, sirA, modified hemA, the operons hemAXCDBL and cbiXJCDETLFGAcysGAcbiYbtuR, and the regulatory gene fnr, significantly increased cobalamin production. To reduce flux along the heme branch of the tetrapyrrole pathway, an antisense RNA strategy involving silencing of the hemZ gene encoding coproporphyrinogen III oxidase was successfully employed. Feedback inhibition of the initial enzyme of the tetrapyrrole biosynthesis, HemA, by heme was overcome by stabilized enzyme overproduction. Similarly, the removal of the B12 riboswitch upstream of the cbiXJCDETLFGAcysGAcbiYbtuR operon and the recombinant production of three different vitamin B12 binding proteins (glutamate mutase GlmS, ribonucleotide triphosphate reductase RtpR and methionine synthase MetH) partly abolished B12‐dependent feedback inhibition. All these strategies increased cobalamin production in B. megaterium. Finally, combinations of these strategies enhanced the overall intracellular vitamin B12 concentrations but also reduced the volumetric cellular amounts by placing the organism under metabolic stress.


Nucleic Acids Research | 2007

SYSTOMONAS — an integrated database for systems biology analysis of Pseudomonas

Claudia Choi; Richard Münch; Stefan Leupold; Johannes C. Klein; Inga Siegel; Bernhard Thielen; Beatrice Benkert; Martin Kucklick; Max Schobert; Jens Barthelmes; Christian Ebeling; Isam Haddad; Maurice Scheer; Andreas Grote; Karsten Hiller; Boyke Bunk; Kerstin Schreiber; Ida Retter; Dietmar Schomburg; Dieter Jahn

To provide an integrated bioinformatics platform for a systems biology approach to the biology of pseudomonads in infection and biotechnology the database SYSTOMONAS (SYSTems biology of pseudOMONAS) was established. Besides our own experimental metabolome, proteome and transcriptome data, various additional predictions of cellular processes, such as gene-regulatory networks were stored. Reconstruction of metabolic networks in SYSTOMONAS was achieved via comparative genomics. Broad data integration is realized using SOAP interfaces for the well established databases BRENDA, KEGG and PRODORIC. Several tools for the analysis of stored data and for the visualization of the corresponding results are provided, enabling a quick understanding of metabolic pathways, genomic arrangements or promoter structures of interest. The focus of SYSTOMONAS is on pseudomonads and in particular Pseudomonas aeruginosa, an opportunistic human pathogen. With this database we would like to encourage the Pseudomonas community to elucidate cellular processes of interest using an integrated systems biology strategy. The database is accessible at .


Bioinformatics | 2006

MetaQuant: a tool for the automatic quantification of GC/MS-based metabolome data

Boyke Bunk; Martin Kucklick; Rochus Jonas; Richard Münch; Max Schobert; Dieter Jahn; Karsten Hiller

UNLABELLED MetaQuant is a Java-based program for the automatic and accurate quantification of GC/MS-based metabolome data. In contrast to other programs MetaQuant is able to quantify hundreds of substances simultaneously with minimal manual intervention. The integration of a self-acting calibration function allows the parallel and fast calibration for several metabolites simultaneously. Finally, MetaQuant is able to import GC/MS data in the common NetCDF format and to export the results of the quantification into Systems Biology Markup Language (SBML), Comma Separated Values (CSV) or Microsoft Excel (XLS) format. AVAILABILITY MetaQuant is written in Java and is available under an open source license. Precompiled packages for the installation on Windows or Linux operating systems are freely available for download. The source code as well as the installation packages are available at http://bioinformatics.org/metaquant


BMC Microbiology | 2011

Sequencing and Characterization of Pseudomonas aeruginosa phage JG004

Julia Garbe; Boyke Bunk; Manfred Rohde; Max Schobert

BackgroundPhages could be an important alternative to antibiotics, especially for treatment of multiresistant bacteria as e.g. Pseudomonas aeruginosa. For an effective use of bacteriophages as antimicrobial agents, it is important to understand phage biology but also genes of the bacterial host essential for phage infection.ResultsWe isolated and characterized a lytic Pseudomonas aeruginosa phage, named JG004, and sequenced its genome. Phage JG004 is a lipopolysaccharide specific broad-host-range phage of the Myoviridae phage family. The genome of phage JG004 encodes twelve tRNAs and is highly related to the PAK-P1 phage genome. To investigate phage biology and phage-host interactions, we used transposon mutagenesis of the P. aeruginosa host and identified P. aeruginosa genes, which are essential for phage infection. Analysis of the respective P. aeruginosa mutants revealed several characteristics, such as host receptor and possible spermidine-dependance of phage JG004.ConclusionsWhole genome sequencing of phage JG004 in combination with identification of P. aeruginosa host genes essential for infection, allowed insights into JG004 biology, revealed possible resistance mechanisms of the host bacterium such as mutations in LPS and spermidine biosynthesis and can also be used to characterize unknown gene products in P. aeruginosa.

Collaboration


Dive into the Boyke Bunk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg Overmann

Ludwig Maximilian University of Munich

View shared research outputs
Top Co-Authors

Avatar

Dieter Jahn

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manfred Rohde

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebekka Biedendieck

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Irene Wagner-Döbler

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Max Schobert

Braunschweig University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge