Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brad D. Hendershot is active.

Publication


Featured researches published by Brad D. Hendershot.


Clinical Biomechanics | 2011

Disturbance and recovery of trunk stiffness and reflexive muscle responses following prolonged trunk flexion: influences of flexion angle and duration.

Brad D. Hendershot; Babak Bazrgari; Khoirul Muslim; Nima Toosizadeh; Maury A. Nussbaum; Michael L. Madigan

BACKGROUND Experimental studies suggest that flexed working postures reduce passive support of the spine, which could represent a significant risk factor for the development of occupational low back disorders. Neuromuscular compensations to reduced passive stiffness include increases in baseline activity or reflexive activation of trunk muscles. Yet, alterations and recovery of the synergy between active and passive tissues following prolonged flexion in humans are currently unknown. METHODS Twelve healthy participants were exposed to all combinations of two trunk flexion durations (2 and 16 min) and three flexion angles (33, 66, and 100% of individual flexion-relaxation angle). Load relaxation was recorded throughout exposures, whereas trunk stiffness and reflexive behaviors of the lumbar extensor muscles were investigated during dynamic responses to sudden perturbations. FINDINGS The magnitude of load relaxation increased with increasing flexion angle. Trunk stiffness decreased and reflex gains increased following flexion exposures; for both outcomes, acute changes were larger following exposure to increasing flexion angle. Reflex gains remained elevated one hour after exposure to maximum flexion. INTERPRETATION Exposure to prolonged trunk flexion changed trunk stiffness and reflex behavior in patterns consistent with epidemiological evidence linking such exposure with the risk of occupational low back disorders. Observed increases in reflex gains, at least among healthy individuals, may be a compensation for decreases in passive trunk stiffness following acute exposure to flexed postures. It remains to be determined whether the neuromuscular system can similarly respond to accumulated disturbances in passive structures following exposure to repeated flexion tasks.


Clinical Biomechanics | 2014

Three-dimensional joint reaction forces and moments at the low back during over-ground walking in persons with unilateral lower-extremity amputation

Brad D. Hendershot; Erik J. Wolf

BACKGROUND Abnormal mechanics of locomotion following lower-extremity amputation are associated with increases in trunk motion, which in turn may alter loads at the low back due to changes in inertial and gravitational demands on the spine and surrounding trunk musculature. METHODS Over-ground gait data were retrospectively compiled from two groups walking at similar self-selected speeds (~1.35m/s): 40 males with unilateral lower-extremity amputation (20 transtibial, 20 transfemoral) and 20 able-bodied male controls. Three-dimensional joint reaction forces and moments at the low back (L5/S1 spinal level) were calculated using top-down and bottom-up approaches. Peak values and the timings of these were determined and compared between and within (bilaterally) groups, and secondarily between approaches. FINDINGS Peak laterally-directed joint reaction forces and lateral bend moments increased with increasing level of amputation, and were respectively 83% and 41% larger in prosthetic vs. intact stance among persons with transfemoral amputation. Peak anteriorly-directed reaction forces and extension moments were 31% and 55% larger, respectively, among persons with transtibial amputation compared to controls. Peak vertical reaction forces and axial twist moments were similar between and within groups. Peak joint reaction forces and moments were larger (3-14%), and the respective timing of these sooner (11-62ms), from the bottom-up vs. top-down approach. INTERPRETATION Increased and asymmetric peak reaction forces and moments at the low back among persons with unilateral lower-extremity amputation, particularly in the frontal plane, suggest potential mechanistic pathways through which repeated exposure to altered trunk motion and spinal loading may contribute to low-back injury risk among persons with lower-extremity amputation.


Ergonomics | 2011

Disturbance and recovery of trunk mechanical and neuromuscular behaviours following prolonged trunk flexion: influences of duration and external load on creep-induced effects

Babak Bazrgari; Brad D. Hendershot; Khoirul Muslim; Nima Toosizadeh; Maury A. Nussbaum; Michael L. Madigan

Trunk flexion results in adverse mechanical effects on the spine and is associated with a higher incidence of low back pain. To examine the effects of creep deformation on trunk behaviours, participants were exposed to full trunk flexion in several combinations of exposure duration and external load. Trunk mechanical and neuromuscular behaviours were obtained pre- and post-exposure and during recovery using sudden perturbations. Intrinsic trunk stiffness decreased with increasing flexion duration and in the presence of the external load. Recovery of intrinsic stiffness required more time than the exposure duration and was influenced by exposure duration. Reflexive trunk responses increased immediately following exposure but recovered quickly (∼2.5 min). Alterations in reflexive trunk behaviour following creep deformation exposures may not provide adequate compensation to allow for complete recovery of concurrent reductions in intrinsic stiffness, which may increase the risk of injury due to spinal instability. Statement of relevance: An increased risk of low back injury may result from flexion-induced disturbances to trunk behaviours. Such effects, however, appear to depend on the type of flexion exposure, and have implications for the design of work involving trunk flexion.


Gait & Posture | 2013

Persons with lower-limb amputation have impaired trunk postural control while maintaining seated balance

Brad D. Hendershot; Maury A. Nussbaum

Abnormal mechanics of movement resulting from lower-limb amputation (LLA) may increase stability demands on the spinal column and/or alter existing postural control mechanisms and neuromuscular responses. A seated balance task was used to investigate the effects of LLA on trunk postural control and stability, among eight males with unilateral LLA (4 transtibial, 4 transfemoral), and eight healthy, non-amputation controls (matched by age, stature, and body mass). Traditional measures derived from center of pressure (COP) time series, and measures obtained from non-linear stabilogram diffusion analyses, were used to characterize trunk postural control. All traditional measures of postural control (95% ellipse area, RMS distance, and mean velocity) were significantly larger among participants with LLA. Non-linear stabilogram diffusion analyses also revealed significant differences in postural control among persons with LLA, but only in the antero-posterior direction. Normalized trunk muscle activity was also larger among participants with LLA. Larger COP-based sway measures among participants with LLA during seated balance suggest an association between LLA and reduced trunk postural control. Reductions in postural control and spinal stability may be a result of adaptations in functional tissue properties and/or neuromuscular responses, and may potentially be caused by repetitive exposure to abnormal gait and movement. Such alterations could then lead to an increased risk for spinal instability, intervertebral motions beyond physiological limits, and pain.


Clinical Biomechanics | 2016

Persons with unilateral transfemoral amputation experience larger spinal loads during level-ground walking compared to able-bodied individuals

Iman Shojaei; Brad D. Hendershot; Erik J. Wolf; Babak Bazrgari

BACKGROUND Persons with lower limb amputation walk with increased and asymmetric trunk motion; a characteristic that is likely to impose distinct demands on trunk muscles to maintain equilibrium and stability of the spine. However, trunk muscle responses to such changes in net mechanical demands, and the resultant effects on spinal loads, have yet to be determined in this population. METHODS Building on a prior study, trunk and pelvic kinematics collected during level-ground walking from 40 males (20 with unilateral transfemoral amputation and 20 matched controls) were used as inputs to a kinematics-driven, nonlinear finite element model of the lower back to estimate forces in 10 global (attached to thorax) and 46 local (attached to lumbar vertebrae) trunk muscles, as well as compression, lateral, and antero-posterior shear forces at all spinal levels. FINDINGS Trunk muscle force and spinal load maxima corresponded with heel strike and toe off events, and among persons with amputation, were respectively 10-40% and 17-95% larger during intact vs. prosthetic stance, as well as 6-80% and 26-60% larger during intact stance relative to controls. INTERPRETATION During gait, larger spinal loads with transfemoral amputation appear to be the result of a complex pattern of trunk muscle recruitment, particularly involving co-activation of antagonistic muscles during intact limb stance; a period when these individuals are confident and likely to use the trunk to assist with forward progression. Given the repetitive nature of walking, repeated exposure to such elevated loading likely increases the risk for low back pain in this population.


Journal of Biomechanics | 2013

Persons with unilateral lower-limb amputation have altered and asymmetric trunk mechanical and neuromuscular behaviors estimated using multidirectional trunk perturbations

Brad D. Hendershot; Babak Bazrgari; Maury A. Nussbaum

Among persons with unilateral lower-limb amputation (LLA), proximal compensations and preferential use of the sound limb during gait and movement may lead to chronic alterations and/or asymmetries in trunk mechanical and neuromuscular behaviors. Trunk stiffness, the magnitude and timing of maximum reflex force, and EMG reflex delays of superficial trunk muscles, were estimated here using multidirectional (anteriorly- and laterally-directed) position-controlled horizontal trunk perturbations (±5mm, applied at T8) with the pelvis immobilized. Alterations and asymmetries in these trunk behaviors were quantified and compared among eight males with unilateral LLA, and eight male non-amputation controls. During anteriorly-directed perturbations, trunk stiffness and maximum reflex force were 24% and 23% lower, respectively, among participants with LLA compared to non-amputation controls, and the timing of maximum reflex force was 8% later. During lateral perturbations, trunk stiffness and maximum reflex force were also significantly lower among participants with LLA, by 22% and 27%, respectively. Bilateral asymmetries were present in trunk stiffness and the timing of maximum reflex force among persons with LLA. Specifically, trunk stiffness was 20% lower and timing of maximum reflex force was 9% later during perturbations involving spinal tissues and muscles ipsilateral to the side of amputation. Reduced and asymmetric trunk mechanical and neuromuscular behaviors may suggest a condition of reduced trunk stability among individuals with LLA, which could be due to repeated exposure to altered and asymmetric gait and movement and/or compensatory muscle recruitment in response to lost or altered musculature subsequent to LLA.


Ergonomics | 2013

Disturbance and recovery of trunk mechanical and neuromuscular behaviours following repetitive lifting: influences of flexion angle and lift rate on creep-induced effects

Nima Toosizadeh; Babak Bazrgari; Brad D. Hendershot; Khoirul Muslim; Maury A. Nussbaum; Michael L. Madigan

Repetitive lifting is associated with an increased risk of occupational low back disorders, yet potential adverse effects of such exposure on trunk mechanical and neuromuscular behaviours were not well described. Here, 12 participants, gender balanced, completed 40 min of repetitive lifting in all combinations of three flexion angles (33, 66, and 100% of each participants full flexion angle) and two lift rates (2 and 4 lifts/min). Trunk behaviours were obtained pre- and post-exposure and during recovery using sudden perturbations. Intrinsic trunk stiffness and reflexive responses were compromised after lifting exposures, with larger decreases in stiffness and reflexive force caused by larger flexion angles, which also delayed reflexive responses.Consistent effects of lift rate were not found. Except for reflex delay no measures returned to pre-exposure values after 20 min of recovery. Simultaneous changes in both trunk stiffness and neuromuscular behaviours may impose an increased risk of trunk instability and low back injury. Practitioner summary An elevated risk of low back disorders is attributed to repetitive lifting. Here, the effects of flexion angle and lift rate on trunk mechanical and neuromuscular behaviours were investigated. Increasing flexion angle had adverse effects on these outcomes, although lift rate had inconsistent effects and recovery time was more than 20 min.


Journal of Biomechanics | 2012

Within- and between-day reliability of trunk mechanical behaviors estimated using position-controlled perturbations

Brad D. Hendershot; Babak Bazrgari; Maury A. Nussbaum; Michael L. Madigan

Recent applications of position-controlled perturbation techniques to the human trunk have allowed separate estimation of intrinsic and reflexive trunk mechanical behaviors. These mechanical behaviors play an important role in spinal stability and have been associated with low back pain risk, yet the reliability of these measures remains unknown. Therefore, the objective of the current study was to assess within- and between-day reliability of several measures of trunk mechanical behaviors obtained from position-controlled trunk perturbations. A secondary objective was to assess if different harness designs, used to connect a participant to the perturbing device, influenced reliability. Data were analyzed from baseline measurements obtained from two previously published studies, and a third unpublished study. The total combined subject pool included 33 healthy young adults (17 M, 16 F). Relative and absolute reliability was quantified using intraclass correlation coefficients (ICCs) and standard errors of measurement (SEM), respectively. Within-day ICCs of intrinsic trunk stiffness (0.84-0.90) and effective mass (0.91-95) were excellent, and were generally higher than ICCs for reflex gain (0.55-0.85), maximum reflex force (0.65-0.85), and timing of maximum reflex force (0.48-0.86). Within-day ICCs (0.48-0.95) were consistently superior to between-day values (0.19-0.72). Improvements in harness design increased both within- and between-day reliability and reduced SEMs for most measures.


Gait & Posture | 2015

Persons with unilateral transfemoral amputation have altered lumbosacral kinetics during sitting and standing movements

Brad D. Hendershot; Erik J. Wolf

Increases in spinal loading have been related to altered movements of the lower back during gait among persons with lower limb amputation, movements which are self-perceived by these individuals as contributing factors in the development of low back pain. However, the relationships between altered trunk kinematics and associated changes in lumbosacral kinetics during sit-to-stand and stand-to-sit movements in this population have not yet been assessed. Three-dimensional lumbosacral kinetics (joint moments and powers) were compared between 9 persons with unilateral transfemoral amputation (wearing both a powered and passive knee device), and 9 uninjured controls, performing five consecutive sit-to-stand and stand-to-sit movements. During sit-to-stand movements, lumbosacral joint moments and powers were significantly larger among persons with transfemoral amputation relative to uninjured controls. During stand-to-sit movements, lumbosacral joint moments and powers were also significantly larger among persons with transfemoral amputation relative to uninjured controls, with the exception of sagittal joint powers. Minimal differences in kinetic measures were noted between the powered and passive knee devices among persons with transfemoral amputation across all conditions. Altered lumbosacral kinetics during sitting and standing movements, important activities of daily living, may play a biomechanical role in the onset and/or recurrence of low back pain or injury among persons with lower-limb amputation.


Journal of Biomechanics | 2013

Evidence for an exposure-response relationship between trunk flexion and impairments in trunk postural control

Brad D. Hendershot; Nima Toosizadeh; Khoirul Muslim; Michael L. Madigan; Maury A. Nussbaum

Prolonged trunk flexion alters passive and active trunk tissue behaviors, and exposure-response relationships between the magnitude of trunk flexion exposure and changes in these behaviors have been reported. This study assessed whether similar exposure-response relationships exist between such exposures and impairments in trunk postural control. Twelve participants (6 M, 6 F) were exposed to three distinct trunk flexion conditions (and a no-flexion control condition), involving different flexion durations with/without an external load, and which induced differing levels of passive tissue creep. Trunk postural control was assessed prior to and immediately following trunk flexion exposures, and during 10 min of standing recovery, by tracking center of pressure (COP) movements during a seated balance task. All COP-based sway measures increased following each flexion exposure. In the anteroposterior direction, these increases were larger with increasing exposure magnitude, whereas such a relationship was not evident for mediolateral sway measures. All measures were fully recovered following 10 min of standing. The present results provide evidence for an exposure-response relationship between trunk flexion exposures and impairments in trunk postural control; specifically, larger impairments following increased exposures (i.e., longer flexion duration and presence of external load). Such impairments in trunk postural control may result from some combination of reduced passive trunk stiffness and altered/delayed trunk reflex responses, and are generally consistent with prior evidence of exposure-dependent alterations in trunk mechanical and neuromuscular behaviors assessed using positional trunk perturbations. Such evidence suggests potential mechanistic pathways through which trunk flexion exposures may contribute to low-back injury risk.

Collaboration


Dive into the Brad D. Hendershot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik J. Wolf

Walter Reed National Military Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison L. Pruziner

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian C. Acasio

Walter Reed National Military Medical Center

View shared research outputs
Top Co-Authors

Avatar

Pawel R. Golyski

Walter Reed National Military Medical Center

View shared research outputs
Top Co-Authors

Avatar

Benjamin J. Darter

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge